【摘要】江蘇省2010屆高三數(shù)學(xué)專題過關(guān)測試 立體幾何(2) 班級姓名學(xué)號成績 一、選擇題(本大題共8小題,每小題5分,共40分,在每小題給出的四個選項中,只有一項是符合題目要求的) 題號 1 2...
2025-03-15 01:52
【摘要】江蘇省2010屆高三數(shù)學(xué)專題過關(guān)測試 立體幾何(1) 班級姓名學(xué)號成績 一、選擇題: 1.下列命題中,正確的是 A.經(jīng)過不同的三點有且只有一個平面 B.分別在兩個平面內(nèi)的兩條直線一定...
2025-03-15 02:03
【摘要】試卷第1頁,總25頁????○????外????○????裝????○????訂????○????線????○????學(xué)校:___________姓名:___________班級:___________考號:___________????○????
2025-01-09 15:44
【摘要】選擇題1.(12年四川卷)如圖,半徑為的半球的底面圓在平面內(nèi),過點作平面的垂線交半球面于點,過圓的直徑作平面成角的平面與半球面相交,所得交線上到平面的距離最大的點為,該交線上的一點滿足,則、兩點間的球面距離為()A.B.C.D.2.(12年廣東卷)某幾何體的三視圖如圖1所示,它的體積為(
2025-01-14 14:09
【摘要】歡迎交流唯一QQ1294383109希望大家互相交流空間向量與立體幾何一、選擇題1.若不同直線l1,l2的方向向量分別為μ,v,則下列直線l1,l2中既不平行也不垂直的是()A.μ=(1,2,-1),v=(0,2,4)B.μ=(3,0,-1),v=(0,0,2)C.μ=(0,2,-3)
2025-08-13 17:46
【摘要】高中數(shù)學(xué)精講精練第七章立體幾何初步【知識圖解】【方法點撥】立體幾何研究的是現(xiàn)實空間,認(rèn)識空間圖形,可以培養(yǎng)學(xué)生的空間想象能力、推理論證能力、運用圖形語言進(jìn)行交流的能力以及幾何直觀能力??臻g的元素是點、線、面、體,對于線線、線面、面面的位置關(guān)系著重研究它們之間的平行與垂直關(guān)系,幾何體著重研究棱柱、棱錐和球。在復(fù)習(xí)時我們要以下幾點:1.注意
2025-08-20 20:20
【摘要】1基礎(chǔ)題題庫三立體幾何201..已知過球面上A、B、C三點的截面和球心的距離等于球半徑的一半,且AB=BC=AC=2,求球的體積。解析:過A、B、C三點截面的小圓的半徑就是正△ABC的外接圓的半徑332,它是Rt△中060所對的邊,其斜邊為34,即球的半徑為34,∴?81256?V;202.正
2025-08-20 20:22
【摘要】借助向量解立體幾何問題知識要點(其中為向量的夾角)。一、求點到平面的距離定義:一點到它在一個平面內(nèi)的正射影的距離叫做點到平面的距離。即過這個點到平面垂線段的長度。一般方法:利用定義先做出過這個點到平面的垂線段,再計算這個垂線段的長度。PBA向量法:PA
2024-11-07 01:07
【摘要】第一篇:2013屆高三數(shù)學(xué)專題——立體幾何(二)線面平行與垂直 2013屆高三數(shù)學(xué)專題——立體幾何 (二)線面平行與垂直 一、定理內(nèi)容(數(shù)學(xué)語言) (1)證明線面平行 (2)證明面面平行 ...
2024-11-16 01:14
【摘要】立體幾何大題1.如下圖,一個等腰直角三角形的硬紙片ABC中,∠ACB=90°,AC=4cm,CD是斜邊上的高沿CD把△ABC折成直二面角.ABC第1題圖ABCD第1題圖(1)如果你手中只有一把能度量長度的直尺,應(yīng)該如何確定A,B的位置,使二面角A-CD-B是直二面角?證明你的結(jié)論.(2)試在平面AB
2025-04-17 13:17
【摘要】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點,且,與⊙O所在的平面成角,是中點.F為PB中點.(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點, (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-14 11:10
【摘要】向量代數(shù)空間解析幾何定義:既有大小又有方向的量稱為向量.相等向量、負(fù)向量、向徑.零向量、向量的模單位向量、向量代數(shù)(2)向量的分解式:},,{zyxaaaa??.,,,,軸上的投影分別為向量在其中zyxaaazyxkajaiaazyx??????
2025-09-25 17:17
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-05 09:40
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負(fù)向量:兩個模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18