【摘要】機動目錄上頁下頁返回結(jié)束1一、利用極坐標計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(2)機動目錄上頁下頁返回結(jié)束2AoDi??irr?iirrr???ii??????i???iiiiiirrr????????????22
2025-05-10 22:22
【摘要】-理學(xué)院工科數(shù)學(xué)教學(xué)中心-《微積分》A哈爾濱工程大學(xué)微積分-理學(xué)院工科數(shù)學(xué)教學(xué)中心--理學(xué)院工科數(shù)學(xué)教學(xué)中心-第九章重積分教學(xué)內(nèi)容和基本要求理解二重積分、三重積分的概念
2025-02-21 11:58
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當(dāng)xxxfx?問題:如何用數(shù)學(xué)語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時有定義,若
2025-07-22 11:10
【摘要】一、利用直角坐標系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)如果積分區(qū)域為:,bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標系(rightanglecoordinatesys
2025-08-21 12:45
【摘要】YANGZHOUUNIVERSITYII二、無界函數(shù)的反常積分第四節(jié)常義積分積分限有限被積函數(shù)有界推廣一、無窮限的反常積分機動目錄上頁下頁返回結(jié)束反常積分(廣義積分)反常積分第五章YANGZHOUUNIVERSITY
2024-10-12 12:38
【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【摘要】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對數(shù)2.對數(shù)微分3.對數(shù)函數(shù)的積分4-1對數(shù)函數(shù)的導(dǎo)數(shù)與積分對數(shù)在對數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對數(shù)函數(shù),
2025-07-21 19:54
【摘要】一、利用直角坐標系計算二重積分二、小結(jié)思考題第二節(jié)二重積分的計算法(1)一、利用直角坐標系計算二重積分??Ddyxf?),(???Ddxdyyxf),(在直角坐標系下,二重積分1.積分區(qū)域的分類:X-型區(qū)域、Y-型區(qū)域、一般區(qū)域如果積分區(qū)域為???????bxaxyxD
2025-04-29 03:15
【摘要】第四章數(shù)值積分與數(shù)值微分/*NumericalIntegrationanddifferentiation*/近似計算??badxxfI)(§1引言?對f(?)采用不同的近似計算方法,從而得到各種不同的求積公式。?以上三種方法都是用被積函數(shù)值的線性組合來表示積分值。推廣,一般地有
2025-05-01 04:16
【摘要】YANGZHOUUNIVERSITYII第四節(jié)?基本積分法:直接積分法;換元積分法;分部積分法?初等函數(shù)求導(dǎo)初等函數(shù)積分機動目錄上頁下頁返回結(jié)束一、有理函數(shù)的積分二、可化為有理函數(shù)的積分舉例有理函數(shù)的積分本節(jié)內(nèi)容:
2024-11-03 22:45
【摘要】2022/8/181第四章數(shù)值積分與數(shù)值微分2022/8/182?,3,2,1?k第四章數(shù)值積分與數(shù)值微分牛頓-柯特斯公式§復(fù)合求積法§龍貝格求積公式§高斯求積法§引言§2022/8/183
2025-08-01 13:33
【摘要】一、積分上限函數(shù)及其導(dǎo)數(shù)二、積分上限函數(shù)求導(dǎo)法則三、微積分基本公式第二節(jié)微積分基本定理設(shè)在區(qū)間上連續(xù),且,則存在,如積分上限在上任意變動,那么對于每一取定的值,均有唯一的數(shù)與之對應(yīng),所以是一個定義在
2024-09-29 17:46
【摘要】第七章微積分的數(shù)值計算方法Romberg算法§Romberg算法§綜合前幾節(jié)的內(nèi)容,我們知道梯形公式,Simpson公式,Cotes公式的代數(shù)精度分別為1次,3次和5次復(fù)化梯形、復(fù)化Simpson、復(fù)化Cotes公式的收斂階分別為2階、4階和6階無論從代數(shù)精度還
2025-08-22 10:54
【摘要】一、問題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點:平頂.曲頂柱體體積=?特點:曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2025-08-21 12:46
【摘要】一、三重積分的定義二、三重積分的計算三、小結(jié)第三節(jié)三重積分的計算設(shè)),,(zyxf是空間有界閉區(qū)域?上的有界函數(shù),將閉區(qū)域?任意分成n個小閉區(qū)域1v?,2v?,,?nv?,其中iv?表示第i個小閉區(qū)域,也表示它的體積,在每個iv?上任取一點),,(
2025-01-19 14:44