【正文】
s performers of the troupe still tour the region39。 Gatland, H. B.。 Liu, C.。 Lin, J. J. A PID Type Fuzzy Controller with SelfTuning Scaling Factors. Fuzzy Sets Syst. 2020, 115, 321–326. (9) Vega, P.。 Sheikhzadeh, M.。 r and d are the set point and the disturbance, and y and yk are the outputs of the plant and its nominal model, respectively. The IMC structure is equivalent to the classical singleloop feedback controller shown in Figure 1b. If the singleloop controller CIMC is given by ? ? ? ?? ? ? ?ss1 ss ~PCCC IMC ?? ( 3) with ? ?? ? ? ?sfsp 1s ~_?C ( 4) where P? (s)=P? (s)P? +(s), P? (s) is the minimum phase part of the plant model, P? +(s) contains any time delays and righthalf plane zeros, and f(s) is a lowpass filter with a steadystate gain of one, which typically has the form: ? ? ? ?ncst11sf ?? ( 5) The tuning parameter tc is the desired closedloop time constant, and n is a positive integer to be determined. Figure Figure 3 FuzzyPID controller structure C ~P P + u d e y y + _ y~~ r _ .eK.eK eK Ki Kd ? Rule Base s .e E R u e PIDU MICC P r + + e + + _ + + + u + + d + + y y + + 10 Model of Fuzzy PID Controller The fuzzy PID controller, as shown in Figure 2, is described as follows: ???????? ?? 10 p1u KKU PID (6) with ? ?u k 1 BBSA??? ? ? γ is a nonlinear time varying parameter( 132 ??? ), A and B are half of the spread of each input and out member function, respectively. The fuzzy PID control actually has two levels of The scaling gains (Ke, Kd, K0, and K1) are at the lower level. The tuning of these scaling gains will affect the gains of fuzzy PID The fuzzy PID control actually has two levels of The scaling gains (Ke, Kd, K0, and K1) are at the lower level. The tuning of these scaling gains will affect the gains of fuzzy PID controllers, resulting in the changing of the control performance. As the control actions are fuzzily coupled, the contribution of each Ke, Kd, K0, and K1 to different control actions is still not very clear, which makes the practical design and tuning process rather difficult. 3 Tuning Fuzzy PID Based on the IMC To tune the fuzzy PID controller based on the IMC method,an analytical model of the fuzzy PID controller is obtained first by simple derivation. Then, the parameters of the fuzzy PID controller can be determined on the basis of the IMC principle. Suppose that an industrial process can be modeled by a first order plus delay time (FOPDT) structure that has the transfer function as follows: ? ? LST KP ??? e1ss~ (7) where K, T, and L are the steadystate gain, the time constant, and the time delay, respectively. The estimation of these parameters using the step response method, frequency response, and closedloop relay feedback, etc., is welldescribed. The FOPDT model is one of the most mon and adequate ones used, especially in the process control One obtains from(6): ? ? ???????? ??? 10 1 KpKsABU P ID ? ( 8) ? ? ? ? ? ?sususU NP IDP ID ?? ( 9) ? ? ? ?ssABKsu N ?? ?????? ?? 10 ( 10) with δ(s) being a nonlinear term without an explicit analytical expression. Obviously, the fuzzy PID control can be considered as a conventional PID with a nonlinear pensation. The conventional PID control term is uPID(s) and the nonlinear pensation is uN(s). 11 Tuning of Fuzzy PID Controller Based on IMC. If we consider the nonlinear pensation uN as a process disturbance and set Gf(s) )=CIMC(s), which is shown in Figure 3, the IMCbased tuning for fuzzy PID controllers can be simplified as follows. By the firstorder Pade180。 Hang, C. C.。 Aleixander, V. SelfTuning Predictive PID Controller. IEE Pro. D 1991, 138 (3), 303–311. 6 (10) Rajani, K. M.。 Hu, B. G.。仿真結(jié)果表明,模糊PID 控制器 通過此種 整 定方法,與 傳統(tǒng)的 PID 控制器 相比在動態(tài)和靜態(tài)上都 實現(xiàn)更好的控制性能 和更好的魯棒性。 此外 , 由圖 5 8可以看 出 模糊 PID 控制器增益低于常規(guī) PID控制器 。 小延遲時間意味著弱非線性特性。 基于 內(nèi)??刂频?模糊 PID整定 。 擴大 增 益的調(diào)整將 會 影響模糊 PID控制器 效果 , 造成 控制 參數(shù) 的不斷變化。 2 問題的提出 常規(guī) PID 控制器 常規(guī) PID 控制器通常被描述 為 下列方程 [810]: .dp eKe dte ? ??? IP ID KKU = ?????? ?? ? .d ee dti1ep TTK ( 1) 其中 E是跟蹤誤差, kp 是比例增益, ki 是積分增益, kd 是 微分 增益 , Ti 和 TD分別 是積分時間常數(shù)和 微分 時間常數(shù),這些控制參數(shù) 的關(guān)系是 KI =KP/Ti 和 KD =KPTd。 雖然非線性被認為是 在增益 裕 度和 相位裕度 基礎(chǔ)上獲得 的,但是 由于非線性因素 , 模糊 PID控制器可能會產(chǎn)生比常規(guī) PID控制器較高的 增 益 。 盡管業(yè)界對于 應(yīng)用模糊 PID有 越來越大的興趣,但 從 控制工程的主流社會 的 角度來看 ,它仍然是一個極具爭議的話題 。 模糊 PID控制系統(tǒng)利用 李亞譜諾夫 穩(wěn)定性理論 進行 穩(wěn)定 性 分析。 仿真結(jié)果表明 利用 內(nèi)??刂?整定 模糊 PID控制參數(shù)是有效的 。 原因之一是模糊 PID參數(shù) 整定的 基本理論分析方法至今 仍不明確 。而 高增益可能 使 控制系統(tǒng)的穩(wěn)定 性變差 [。 PID控制器的傳遞函數(shù)可以表示如下 : ? ?s 1st1st)s( di )( ???CC KG ( 2) 在根軌跡中, PID控制器 有兩個零點 it 和 dt ,一個極點是原點。作為 控制 行 為 的模糊耦合 控制 , Ke, Kd, K0, 和 K1以 何種 不同的控制行動仍然沒有非常清楚,這使得實際設(shè)計和調(diào)試過程相當困難。 如果我們考慮非線性補償 UN(s)作為一個 過 程的干擾 ,并設(shè)置為 Gf(s)如圖 3, 基于 內(nèi)??刂频?模糊 PID控制器可簡化如下: s21s21e s LLL???? (11) 因此,為 ??s~P 可以分解為 ??s~P = ??s~?P ??s~?P , 其中 ? ?? ? ?????? ???? s211ss~LTKP (12) 從而得到 ? ? ? ?? ?st1 s211ssc??????? ??? KLTC IM C ( 13) 模糊 PID在第 k水平 上的 帶寬可 以通過適合的 ?來控制。 由 圖 5可以看出 , 由于延遲時間小 ,常規(guī) PID控制和模糊 PID控制 差異不大。 圖 6 a=1時, 模糊 PID控制 (實線) 和常規(guī) 圖 7 a=, 模糊 PID控制 (實線) 和常規(guī) PID控制 (虛線)性能比較 PID控制 (虛線)性能比較 5 結(jié)論 本文 介紹 了 一種基于內(nèi)模控制的 模糊 PID控制器的 整定分析方法 。 參考文獻 (1) Sugeno. M. Industrial Ap