【摘要】第一章勾股定理章末小結(jié)2022秋季數(shù)學八年級上冊?B【易錯分析】【例1】若一個三角形的三邊長分別為3、4、x,則使此三角形是直角三角形的x的值是.5或7【分析】本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,因此兩條邊中的較長邊4既可以是直角邊,也可
2025-06-21 05:34
【摘要】第18章 勾股定理 第 第2課時 勾股定理的應用課時 勾股定理的應用 第2課時 勾股定理的應用目標突破目標突破總結(jié)反思總結(jié)反思第18章 勾股定理知識目標知識目標知識目標知識目標第2課時 勾股定理的應用目標突破目標突破目標一 會利用勾股定理解決實際問題第2課時 勾股定理的應用第2課時 勾股定理的應用
2025-06-20 12:03
【摘要】課堂反饋1.下列各組數(shù)為勾股數(shù)的是()A.5,12,13B.3,4,7C.4,,D.8,15,16A2.若一個三角形的三邊長分別為5,3,4,則這個三角形最長邊上的高是()A.B.
2025-06-12 12:08
【摘要】第18章勾股定理勾股定理知識點勾股定理的應用1.將13米長的梯子靠在一堵墻上,若梯子的底部離墻角5米,則梯子的頂部離墻角(B)A.11米B.12米C.13米D.14米2.如圖,在邊長為1個單位長度的正方形網(wǎng)格中,以網(wǎng)格線的交點為頂點構(gòu)成△A
2025-06-13 12:20
【摘要】第一頁,編輯于星期六:七點五十一分。,,,第二頁,編輯于星期六:七點五十一分。,第三頁,編輯于星期六:七點五十一分。,,第四頁,編輯于星期六:七點五十一分。,第五頁,編輯于星期六:七點五十一分。,第六...
2024-10-22 03:57
【摘要】第一章勾股定理3勾股定理的應用3勾股定理的應用第一章勾股定理A知識要點分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個正方體紙盒的點A沿紙盒表面爬到點B,它所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是()
2025-06-19 22:19
【摘要】第一章勾股定理1探索勾股定理第一課時,較長的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長的平方為()
2025-06-12 01:43
【摘要】第二課時剪四個與圖①完全相同的直角三角形,然后將它們拼成如圖②所示的圖形.(1)大正方形的邊長可以表示為,面積可以表示為.(2)大正方形由4個三角形和1個小正方形組成,面積可以表示為.對比兩種表示方法,可以得到等式:,
【摘要】小專題(三)勾股定理與其逆定理的綜合應用勾股定理揭示了直角三角形三邊之間的關(guān)系,利用這個關(guān)系,在已知兩邊或者三邊之間的關(guān)系的基礎(chǔ)上可求出未知的邊的長.勾股定理的逆定理是判斷一個三角形為直角三角形的重要依據(jù)之一,所以這兩個知識點是中考必考內(nèi)容,可能單獨考查其中一個知識點,也可能把兩個知識點綜合起來考查.類型1勾股定理在折疊問題中的應用1
2025-06-17 17:00
【摘要】第一章勾股定理勾股定理的應用◎新知梳理1.在運用勾股定理解決數(shù)學問題中,首先應構(gòu)造直角三角形,再利用已知兩邊的長求第三邊;或已知其中的一邊,及其中兩邊的數(shù)量關(guān)系,通過建立方程求出這兩邊的長度.2.如圖,若圓柱的底面周長是40cm,高是30cm,從圓柱底部A處沿側(cè)面纏繞一圈絲線到頂部B處做裝飾,求這條
2025-06-21 12:20
【摘要】1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個三角形是否直角三角形.一、學習目標本節(jié)的重點是:勾股定理的逆定理.本節(jié)的難點是:用勾股定理的逆定理判斷一個三角形是否直角三角形.
2024-11-11 23:17
【摘要】第一章第一章勾股定理勾股定理八年級數(shù)學北師大版·上冊探索勾股定理(第2課時)一、新課引入一、新課引入如圖,分別以直角三角形的三條邊為邊長向外作正方形,你能利用這個圖說明勾股定理的正確性嗎?一、新課引入一、新課引入方法一:方法二:“割”“補”分割為四個直角三角形和一個小正方形.補成大正方形,用大正方形的面積減
【摘要】第一章第一章勾股定理勾股定理八年級數(shù)學北師大版·上冊探索勾股定理(第1課時)一、新課引入一、新課引入如圖,從電線桿離地面8m處向地面拉一條鋼索,如果這條鋼索在地面的固定點距離電線桿底部6m,那么需要多長的鋼索?一、新課引入一、新課引入觀察下面地板磚示意圖:你發(fā)現(xiàn)了什么?你能發(fā)現(xiàn)圖中三
【摘要】直角三角形的判定直角三角形有哪些性質(zhì)?(1)有一個角是直角;(2)兩個銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方;反之,一個三角形滿足什么條件,才能是直角三角形呢?回顧思考:(1)有一個角是直角的三角形是直角三角形;(2)有兩個角的和是90°的三
2025-06-18 04:59
【摘要】任何一個以x為未知數(shù)的一元一次方程都可以變形為ax+b=0(a≠0)的形式,所以解一元一次方程,相當于在某個一次函數(shù)y=ax+b的函數(shù)值為時,求自變量x的值.兩個一次函數(shù)圖象的交點坐標,就是這兩個一次函數(shù)關(guān)系式組成的方程組的解.實踐與探索0任何一個以x為未知數(shù)的一元一次不等式都可以變形為ax+b&g