【摘要】第一章勾股定理章末小結(jié)2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?B【易錯(cuò)分析】【例1】若一個(gè)三角形的三邊長分別為3、4、x,則使此三角形是直角三角形的x的值是.5或7【分析】本題已知直角三角形的兩邊長,但未明確這兩條邊是直角邊還是斜邊,因此兩條邊中的較長邊4既可以是直角邊,也可
2025-06-21 05:34
【摘要】第18章 勾股定理 第 第2課時(shí) 勾股定理的應(yīng)用課時(shí) 勾股定理的應(yīng)用 第2課時(shí) 勾股定理的應(yīng)用目標(biāo)突破目標(biāo)突破總結(jié)反思總結(jié)反思第18章 勾股定理知識(shí)目標(biāo)知識(shí)目標(biāo)知識(shí)目標(biāo)知識(shí)目標(biāo)第2課時(shí) 勾股定理的應(yīng)用目標(biāo)突破目標(biāo)突破目標(biāo)一 會(huì)利用勾股定理解決實(shí)際問題第2課時(shí) 勾股定理的應(yīng)用第2課時(shí) 勾股定理的應(yīng)用
2025-06-20 12:03
【摘要】課堂反饋1.下列各組數(shù)為勾股數(shù)的是()A.5,12,13B.3,4,7C.4,,D.8,15,16A2.若一個(gè)三角形的三邊長分別為5,3,4,則這個(gè)三角形最長邊上的高是()A.B.
2025-06-12 12:08
【摘要】第18章勾股定理勾股定理知識(shí)點(diǎn)勾股定理的應(yīng)用1.將13米長的梯子靠在一堵墻上,若梯子的底部離墻角5米,則梯子的頂部離墻角(B)A.11米B.12米C.13米D.14米2.如圖,在邊長為1個(gè)單位長度的正方形網(wǎng)格中,以網(wǎng)格線的交點(diǎn)為頂點(diǎn)構(gòu)成△A
2025-06-13 12:20
【摘要】第一頁,編輯于星期六:七點(diǎn)五十一分。,,,第二頁,編輯于星期六:七點(diǎn)五十一分。,第三頁,編輯于星期六:七點(diǎn)五十一分。,,第四頁,編輯于星期六:七點(diǎn)五十一分。,第五頁,編輯于星期六:七點(diǎn)五十一分。,第六...
2025-10-13 03:57
【摘要】第一章勾股定理3勾股定理的應(yīng)用3勾股定理的應(yīng)用第一章勾股定理A知識(shí)要點(diǎn)分類練B規(guī)律方法綜合練C拓廣探究創(chuàng)新練1.如圖1-3-1,一只螞蟻從一個(gè)正方體紙盒的點(diǎn)A沿紙盒表面爬到點(diǎn)B,它所爬過的最短路線的痕跡(虛線)在側(cè)面展開圖中的位置是()
2025-06-19 22:19
【摘要】第一章勾股定理1探索勾股定理第一課時(shí),較長的直角邊稱為,斜邊稱為.:直角三角形兩直角邊的平方和等于斜邊的.如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么.△ABC中,∠C=90°,AB=7,BC=5,則邊AC的長的平方為()
2025-06-12 01:43
【摘要】第二課時(shí)剪四個(gè)與圖①完全相同的直角三角形,然后將它們拼成如圖②所示的圖形.(1)大正方形的邊長可以表示為,面積可以表示為.(2)大正方形由4個(gè)三角形和1個(gè)小正方形組成,面積可以表示為.對(duì)比兩種表示方法,可以得到等式:,
【摘要】小專題(三)勾股定理與其逆定理的綜合應(yīng)用勾股定理揭示了直角三角形三邊之間的關(guān)系,利用這個(gè)關(guān)系,在已知兩邊或者三邊之間的關(guān)系的基礎(chǔ)上可求出未知的邊的長.勾股定理的逆定理是判斷一個(gè)三角形為直角三角形的重要依據(jù)之一,所以這兩個(gè)知識(shí)點(diǎn)是中考必考內(nèi)容,可能單獨(dú)考查其中一個(gè)知識(shí)點(diǎn),也可能把兩個(gè)知識(shí)點(diǎn)綜合起來考查.類型1勾股定理在折疊問題中的應(yīng)用1
2025-06-17 17:00
【摘要】第一章勾股定理勾股定理的應(yīng)用◎新知梳理1.在運(yùn)用勾股定理解決數(shù)學(xué)問題中,首先應(yīng)構(gòu)造直角三角形,再利用已知兩邊的長求第三邊;或已知其中的一邊,及其中兩邊的數(shù)量關(guān)系,通過建立方程求出這兩邊的長度.2.如圖,若圓柱的底面周長是40cm,高是30cm,從圓柱底部A處沿側(cè)面纏繞一圈絲線到頂部B處做裝飾,求這條
2025-06-21 12:20
【摘要】1.理解并掌握勾股定理的逆定理;2.利用勾股定理的逆定理判定一個(gè)三角形是否直角三角形.一、學(xué)習(xí)目標(biāo)本節(jié)的重點(diǎn)是:勾股定理的逆定理.本節(jié)的難點(diǎn)是:用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形.
2024-11-11 23:17
【摘要】第一章第一章勾股定理勾股定理八年級(jí)數(shù)學(xué)北師大版·上冊(cè)探索勾股定理(第2課時(shí))一、新課引入一、新課引入如圖,分別以直角三角形的三條邊為邊長向外作正方形,你能利用這個(gè)圖說明勾股定理的正確性嗎?一、新課引入一、新課引入方法一:方法二:“割”“補(bǔ)”分割為四個(gè)直角三角形和一個(gè)小正方形.補(bǔ)成大正方形,用大正方形的面積減
【摘要】第一章第一章勾股定理勾股定理八年級(jí)數(shù)學(xué)北師大版·上冊(cè)探索勾股定理(第1課時(shí))一、新課引入一、新課引入如圖,從電線桿離地面8m處向地面拉一條鋼索,如果這條鋼索在地面的固定點(diǎn)距離電線桿底部6m,那么需要多長的鋼索?一、新課引入一、新課引入觀察下面地板磚示意圖:你發(fā)現(xiàn)了什么?你能發(fā)現(xiàn)圖中三
【摘要】直角三角形的判定直角三角形有哪些性質(zhì)?(1)有一個(gè)角是直角;(2)兩個(gè)銳角的和為90°(互余);(3)兩直角邊的平方和等于斜邊的平方;反之,一個(gè)三角形滿足什么條件,才能是直角三角形呢?回顧思考:(1)有一個(gè)角是直角的三角形是直角三角形;(2)有兩個(gè)角的和是90°的三
2025-06-18 04:59
【摘要】任何一個(gè)以x為未知數(shù)的一元一次方程都可以變形為ax+b=0(a≠0)的形式,所以解一元一次方程,相當(dāng)于在某個(gè)一次函數(shù)y=ax+b的函數(shù)值為時(shí),求自變量x的值.兩個(gè)一次函數(shù)圖象的交點(diǎn)坐標(biāo),就是這兩個(gè)一次函數(shù)關(guān)系式組成的方程組的解.實(shí)踐與探索0任何一個(gè)以x為未知數(shù)的一元一次不等式都可以變形為ax+b&g