【摘要】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【摘要】廣東高考數(shù)學(xué)真題匯編:立體幾何1、(2011?廣東文數(shù))正五棱柱中,不同在任何側(cè)面且不同在任何底面的兩頂點(diǎn)的連線稱為它的對角線,那么一個正五棱柱對角線的條數(shù)共有( ?。?A、20 B、15C、12 D、101解答:解:由題意正五棱柱對角線一定為上底面的一個頂點(diǎn)和下底面的一個頂點(diǎn)的連線,因?yàn)椴煌谌魏蝹?cè)面內(nèi),故從一個頂點(diǎn)出發(fā)的對角線有2條.正五棱柱對角線的條
2025-04-07 21:28
【摘要】精品資源06陜西高考《立體幾何》試題的原型陜西洋縣中學(xué)(723300)劉大鳴2006年陜西卷如圖,點(diǎn)A在直線上的射影為點(diǎn)B在上的射影為已知求:(I)直線AB分別與平面所成角的大??;(II)二面角的大小。ABA1B1αβl第19題解法一圖EFABA1B1αβl第19題解法二圖yxyE
2025-04-17 12:00
【摘要】精品資源06上海高考立體幾何問題的原型陜西洋縣中學(xué)(723300)劉大鳴空間向量的坐標(biāo)運(yùn)算問題,教材中的例4是借助空間的坐標(biāo)運(yùn)算和向量夾角算出了正方體相對面上兩異面直線所成角,這種“定量”的算角的思維方法為空間向量開辟了新的應(yīng)用天地。您通過例4的學(xué)習(xí)是否掌握了這種思維方法?不妨試一試,求解06年上海的兩次高考中的立體幾問題。06年上海春季高考在
2025-04-17 08:50
【摘要】空間立體幾何考試范圍:xxx;考試時間:100分鐘;命題人:xxx注意事項(xiàng):1.答題前填寫好自己的姓名、班級、考號等信息2.請將答案正確填寫在答題卡上第I卷(選擇題)請點(diǎn)擊修改第I卷的文字說明評卷人得分一、選擇題(題型注釋)1.如圖,已知球O是棱長為1的正方體ABCB-A1B1C1D1的內(nèi)切球,則平面ACD1截球O的截面面積為()
2025-03-25 06:42
【摘要】空間向量在立體幾何中的應(yīng)用5前段時間我們研究了用空間向量求角(包括線線角、線面角和面面角)、求距離(包括線線距離、點(diǎn)面距離、線面距離和面面距離)今天我來研究如何利用空間向量來解決立體幾何中的有關(guān)證明及計(jì)算問題。一、空間向量的運(yùn)算及其坐標(biāo)運(yùn)算的掌握二、立體
2025-01-08 14:05
【摘要】多面體的體積和表面積圖形尺寸符號立方體長方體∧棱柱∨三棱柱棱錐棱臺圓柱和空心圓柱∧管∨斜線直圓柱直圓錐圓臺球球扇形∧球楔∨球缺
2025-04-17 01:00
【摘要】1立體幾何測試卷時量:90分鐘滿分:100分班級學(xué)號姓名一、選擇題(4’×10=40’)1.一條直線與一個平面所成的角等于3?,另一直線與這個平面所成的角是6?.則這兩條直線的位置關(guān)系()A.必定相
2025-01-09 16:30
【摘要】高考數(shù)學(xué)專題復(fù)習(xí):立體幾何專題(理)一、山東省高考試題分析高考試卷中,立體幾何把考查的立足點(diǎn)放在空間圖形上,突出對空間概念和空間想象能力的考查。立體幾何的基礎(chǔ)是對點(diǎn)、線、面的位置關(guān)系的討論和研究,進(jìn)而討論幾何體。高考命題時,突出空間圖形的特點(diǎn),側(cè)重于直線與直線、直線與平面、兩個平面的位置的關(guān)系以及空間角、面積、體積的計(jì)算的考查,以便檢測考生立體幾何的知識水平和能力。高考試題中題型
2025-06-07 18:09
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何直線、平面、簡單幾何體三個公理、三個推論平面平行直線異面直線相交直線公理4及等角定理異面直線所成的角異面直線間的距離直線在平面內(nèi)直線與平面平行直線與平面相交空間兩條直線概念、判定與性質(zhì)三垂線定理垂直斜交直線與平面所成的角空間直線與平面空間兩個平面棱柱棱錐球兩個平面平行兩個平面相交距
2025-04-17 12:56
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。(1)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個平面的公共直線上。(2)證明共點(diǎn)問題,一般是先證
2025-06-07 21:19
【摘要】立體幾何題型歸類總結(jié)一、考點(diǎn)分析基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①★②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-04-04 03:19
【摘要】高考文科數(shù)學(xué)立體幾何題型與方法(文科)一、考點(diǎn)回顧1.平面(1)平面的基本性質(zhì):掌握三個公理及推論,會說明共點(diǎn)、共線、共面問題。(2)證明點(diǎn)共線的問題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個平面的公共點(diǎn)(依據(jù):由點(diǎn)在線上,線在面內(nèi),推出點(diǎn)在面內(nèi)),這樣,可根據(jù)公理2證明這些點(diǎn)都在這兩個平面的
2025-01-14 15:13
【摘要】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點(diǎn)E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,求AE與平面PDB所成的角的大小.解:如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當(dāng)且E為PB的中點(diǎn)時,,
2025-08-05 10:17