【正文】
. Since , we conclude thatm = p + 1. The difference of 8 197。med and the dispersive phase change at the re?ector substrate interface should also be known very accurately. This is discussed further after Example 2. The examples below are based on measured values. 2. Worked examples . Example 1 Estimating the value of 02P?? from 01p?? In an experiment using ―brownish‖ mica as substrate, the contact wavelengths of three adjacent fringes of unknown order p, p ? 1, and p ? 2 are measured (Fig. 1) and found to be at 0000 156 04 .1 8 0. 11 , 57 61 .0 7 0. 16 ,pp AA?? ?? ? ? ?and 00 2 59 27 .3 8 0. 21p A? ? ?? If we want to estimate the position of 02P?? from 0p? and 01p?? then putting p ?m = 2 into Eq. (6) we 002 5 6 0 4 . 1 8 5 9 2 6 . 9 95 6 0 4 . 1 81 2 ( 1 )5 7 6 1 . 0 7p A? ? ???? (11) Obtain Fig. 1. Schematic representation of the locations and shapes of the FECO in Examples 1 and 2. The ?at parts in 0p? , 01p?? and 02P?? result from the elastic distortion of the glue which supports the mica [3]. For such a ?at contact of mica in air, odd (...,p,p ? 2,...) fringes always have a similar shape, which is different from that of the even (...,p?1,p?3,...) fringes. Speci?cally, the place at which the fringes stop being ?at and start bending has a bigger discontinuity in its derivative for odd fringes than for even fringes. Also note that since mp, Dm? , 1Dm?? and 2Dm?? are closer together than 0p? , 01p?? and 02P?? . R. Tadmor et al. / Journal of Colloid and Interface Science 264 (2020) 548–553 If we include dispersion in the refractive index, then we need to know the relation for the refractive index of the fringe (β or γ) that is being measured as a function of ―brownish mica,‖ this is [17] 5 ?? ?? ? ? (12) where λ is the wavelength in 197。因此,對(duì)大多數(shù)的系統(tǒng)而言,這個(gè)固定的值修正已經(jīng)完成。從理論上來講,它應(yīng)該有可能包括擴(kuò)散的中間折射率以及在表面襯底相位的變化。 有部分不同時(shí)因?yàn)榻橘|(zhì)的折射率假設(shè)為非色散,部分因?yàn)樵颇搞y云母銀相變化也假定非色散。因此我們第一個(gè)假設(shè)是 m=p。 一個(gè)未知順序的邊緣接觸位置的測(cè)量值 p是在 0 ? ? 條件下測(cè)得,p1是在 00 1 A? ? ? 下測(cè)得。 197。如果我們想要從 0p? 和 01p?? 的值來估計(jì) 02P?? 的位置,可以將 pm=2代入方程( 6)。然后。因此,通過式( 7)的計(jì)算,我們又可以得到式( 6)。類似的,方程( 5)或者與它相似的方程( 6),可以針對(duì)任何 0m? ,也同樣針對(duì) 02P?? ,從而減少了對(duì)聯(lián)系條紋需求的最小數(shù)量,數(shù)值為 2。在下面的例 1中我們將介紹,μ m 的值通過方程式( 6)得到的λ m近似值帶入方程式( 12)計(jì)算得到。這種云母銀界面反射相變已經(jīng)在被研究,它也曾經(jīng)表明它可以被看作是一個(gè)明顯的基材的光學(xué)厚度的微小變化,而不是 Y代替 Y’,: 2 , 1 , 2 , 3 , ..., ,Y p p??? ? ? ( 2a) 很直觀的能看出,對(duì)提出的問題的解決方法建議使用這個(gè)式子。為了計(jì)算出這個(gè)聯(lián)立方程,我們需要知道兩個(gè)相鄰邊緣的位置, DP? 和 1DP?? ,在有限的 D 和三個(gè)相鄰條紋的接觸位置,在 D=0 0p? , 01P?? 和 02P?? 。不同問題的處理方法被 Horn 和 Smith 和Farrell和 Heuberger做了標(biāo)記,在這項(xiàng)研究中,然而,我們提供了一個(gè)簡(jiǎn)單的方法來解釋這個(gè)問題。 當(dāng)透明的基質(zhì)層(通常是云目表)接觸時(shí), pthorder的邊緣位置 0p? 通常在可見光的波長(zhǎng)范圍內(nèi)。 2020 屆本科畢業(yè)設(shè)計(jì) (論文 )外文 文獻(xiàn)翻譯 學(xué) 院: 專 業(yè): 姓 名: 學(xué) 號(hào): 外文出處: Thickness and refractive index Measurements using multiple beam interference fringes 附 件: ; ?;灞砻婧螅喔舻木嚯x為 d的位置形成三層干涉。一個(gè)比一個(gè)更簡(jiǎn)單的解釋在 。 上述傳統(tǒng)方法的限制是 DP? , 1DD?? , 0D? , 01D?? 和 02D?? 需要在可見的情況下對(duì)他們進(jìn)行測(cè)量。具體地,用公式( 2a)代替在公式( 1a)里層的厚度 Y 邊緣的接觸位置,我們應(yīng)該能夠使一個(gè)接觸邊緣位置和任何其他聯(lián)系邊緣位 置有關(guān)聯(lián)。實(shí)驗(yàn)中,如果測(cè)量是一個(gè)距離比較大的邊緣 Dm? 其接觸位置 0m? 是不可見的,一種能夠計(jì)算出( pm)(在完成 mth 邊緣的測(cè)量使用)的值的方法就是把表面與基體底物接觸 ,計(jì)算通過條紋發(fā)現(xiàn) p邊緣。實(shí)際上,在某些情況下只有兩個(gè)條紋在可見光范圍內(nèi)(例如非常薄的云母),這時(shí)方程( 5)更適合在這個(gè)情況下使用。 通過上面的計(jì)算,有一點(diǎn)可以很清楚:就如在論文【 3】中所表述的那樣,方程式( 1a)不需要考慮物質(zhì)的擴(kuò)散。利用方程( 5)和 0p? , 01p?? ,我們可以計(jì)算與 m、 m m2相對(duì)應(yīng)的接觸位置邊緣。得到 002 5 6 0 4 . 1 8 5 9 2 6 . 9 95 6 0 4 . 1 81 2 ( 1 )5 7 6 1 . 0 7p A? ? ???? (11) 圖一:圖示的位置和形狀適用于例 1和例 [3],形成了 0p? , 01p?? 和 02P?? 的平坦部分。 非常的吻合,當(dāng)然,存在實(shí)驗(yàn)誤差?;氖呛衷颇?,它的折射率從方程( 12)中計(jì)算得出。利用這個(gè)猜想,我們把值 0p? , 01p?? 和 Dm? (我們猜測(cè) DP? )帶入到方程( 1a)中,得到D = 1363 197。我們也應(yīng)該注意 m = p + 2,我們得到 D = 5217 197。然后,就像下面所討論的那樣,包含分散相變 ,而理論上來說 ,做起來還是很困難的。然后,在某些特定的情況下,人們還是要將相變結(jié)合起來。. We ?rst calculate the refractive indices at the three contact wavelengths, and obtain Now, using Eq. (5), we obtain 0021 .5 9 2 9 5 6 0 4 .1 8 5 9 2 7 .2 41 .5 9 3 7 5 6 0 4 .1 81 .5 9 4 6 1 2 ( 1 )1 .5 9 4 6 5 7 6 1 .0 7p A? ? ?????????? (13) which is in excellent agreement with the measured value of 177。 is in part because therefractive index of the medium was assumed to be nondispersive, and in part because the mica–silver phase change was also assumed to be nondispersive. We should also note that for m = p + 2, we obtain D = 5217 197。. The odd version of Eq. (1a) with 0p? , 01p?? , and 1Dm?? (which we guess to be DP? ), now resultsin D = 3280 197。 is the refractive index of the mica at DP? (as noted in Eq. (1)). Substituting Eqs. (4) and (8) into Eq. (1), we obtainthe dispersive version of (1a) as ? ? 10000 1 2 1 202020t a n( ) 2 si n( ( 1 ) ( 1 ) ) 1 c os( ( 1 ) ( 1 ) ) ( 1 )p p p pppmed D D DP P Pp p pD ? ? ? ????? ? ? ? ? ?? ? ?? ? ? ? ???????? ? ? ? ? ? ? ? ????? ( 9) Equation (9) is the analogue of Eq. (1a) with a correction for the dispersion in the substrate refractive index, and as in Eq. (1a), + and ? refer to p odd and p even order fringes, respectively. Finally, we may write the analogue to Eq. (9) for any order of fringe, ? ? 10000 1 2 1 2112t a n( ) 2 si n( ( 1 ) ( 1 ) ) 1 c os( ( 1 ) ( 1 ) ) ( 1 )m m m mm e d m mD D Dm m mm m m mD ? ? ? ?? ? ? ?? ? ? ? ?? ? ?? ? ? ? ?????????? ? ? ? ? ? ? ? ????? ( 10) and then use Eq. (5) to replace the unknowns 0m? and 01m?? with the measured and 01p?? (and the calculated 02P?? in the case where the refractive index of the medium is not known).