【摘要】Pro/E各種曲線方程集合每一頁(yè)的曲線類型如下:第1頁(yè):碟形彈簧、葉形線、螺旋線(Helicalcurve)、蝴蝶曲線和漸開(kāi)線;第2頁(yè):螺旋線、對(duì)數(shù)曲線、球面螺旋線、雙弧外擺線和星行線;第3頁(yè):心臟線、圓內(nèi)螺旋線、正弦曲線、太陽(yáng)線和費(fèi)馬曲線(有點(diǎn)像螺紋線);第4頁(yè):Talbot曲線、4葉線、Rhodonea曲
2025-08-04 10:01
【摘要】曲線和方程說(shuō)課?一、教材及教學(xué)對(duì)象分析?二、教學(xué)手段和方法?三、學(xué)法?四、教學(xué)過(guò)程?五、教學(xué)效果預(yù)測(cè)一、教材及教學(xué)對(duì)象分析?1.教材的地位和作用?2.教學(xué)對(duì)象分析?3.教學(xué)重點(diǎn)和難點(diǎn)分析?4.教學(xué)目標(biāo)分析二、教學(xué)手段和方法?教學(xué)手段:利用計(jì)算機(jī)輔助教學(xué)
2024-11-19 03:47
【摘要】雙曲線及標(biāo)準(zhǔn)方程一、回顧?、焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系yoxF1F2··xyoF1F2··x2a2+y2b2=1y2x2a
2025-08-01 17:58
【摘要】2020年12月19日星期六Ctrl+Alt+M=菜單欄;Ctrl+Alt+T=工具欄;Ctrl+Alt+S=滾動(dòng)條;Ctrl+Alt+H=窗口;Ctrl+Alt+B=背景xyo如圖,在直角坐標(biāo)系中,平分第一、三象限的直線的方程是(1)直線上一點(diǎn)M(x0,y0)的坐標(biāo)x0,y0是方程x-y=0的解;x-y=0滿足:
2024-11-12 01:35
【摘要】一般地,在直角直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).曲線C上的點(diǎn)的坐標(biāo)構(gòu)成集合為A二元方程f(x,y)=0的解集為BBA?AB?那么這個(gè)方程叫做曲線的方程;
2025-08-16 02:33
【摘要】一、回顧1、橢圓的第一定義是什么?2、橢圓的標(biāo)準(zhǔn)方程,焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-16 01:11
【摘要】1.(2020·福建卷)已知拋物線C:y2=2px(p0)過(guò)點(diǎn)A(1,-2).(1)求拋物線C的方程,并求其準(zhǔn)線方程;(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線L,使得直線L與拋物線C有公共點(diǎn),且直線OA與L的距離等于?若存在,求直線L的方程;若不存在,說(shuō)明理由.解析:(1
2025-08-14 05:28
【摘要】2.2雙曲線2.雙曲線的定義與標(biāo)準(zhǔn)方程課堂互動(dòng)講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),幾何圖形及標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程.2.掌握雙曲線的標(biāo)準(zhǔn)方程.3.會(huì)利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題.課前自主學(xué)案溫故夯基3已知橢圓方程為5x
2024-11-09 02:17
【摘要】九、《圓錐曲線與方程》變式試題XYPODM1.(人教A版選修1-1,2-1第39頁(yè)例2)如圖,在圓上任取一點(diǎn)P,過(guò)點(diǎn)P作X軸的垂線段PD,D為垂足.當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?變式1:設(shè)點(diǎn)P是圓上的任一點(diǎn),定點(diǎn)D的坐標(biāo)為(8,0).當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求線段PD的中點(diǎn)M的軌跡方程.解:設(shè)點(diǎn)M的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則,.即,.
2025-08-04 10:24
【摘要】第1頁(yè)共35頁(yè)普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問(wèn)題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問(wèn)題?;癁榈仁浇鉀Q,要加強(qiáng)等價(jià)轉(zhuǎn)化思想的訓(xùn)練;2.通過(guò)圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【摘要】第二講參數(shù)方程1、參數(shù)方程的概念(1)在取定的坐標(biāo)系中,如果曲線上任意一點(diǎn)的坐標(biāo)x、y都是某個(gè)變數(shù)t的函數(shù),即并且對(duì)于t的每一個(gè)允許值,由上述方程組所確定的點(diǎn)M(x,y)都在這條曲線上,那么上述方程組就叫做這條曲線的參數(shù)方程,聯(lián)系x、y之間關(guān)系的變數(shù)叫做參變數(shù),簡(jiǎn)稱
2025-05-09 05:20
【摘要】 圓錐曲線的定義、方程與性質(zhì)]1.設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為x=-2,則拋物線的方程是( )A.y2=-8xB.y2=8xC.y2=-4xD.y2=4x2.橢圓+=1的離心率為( )A.B.C.D.3.雙曲線2x2-y2=8的實(shí)軸長(zhǎng)是( )A.2B.2C.4D.44.過(guò)拋物線y2=2px(p0)的焦點(diǎn)F的直
2025-07-23 20:57
【摘要】......雙曲線漸近線方程百科名片??雙曲線漸近線方程雙曲線漸近線方程,是一種幾何圖形的算法,這種主要解決實(shí)際中建筑物在建筑的時(shí)候的一些數(shù)據(jù)的處理。雙曲線的主要特點(diǎn):無(wú)限接近,但不可以相交。分為鉛直漸
2025-06-23 22:40
【摘要】二圓錐曲線的參數(shù)方程更上一層樓基礎(chǔ)·鞏固1直線=1與橢圓=1相交于A、B兩點(diǎn),該橢圓上點(diǎn)P使得△PAB的面積等于3,這樣的點(diǎn)P共有()思路解析:設(shè)P1(4cosα,3sinα),α∈(0,),則=×4sinα+×3×4cosα=6(si
2025-08-05 03:29
【摘要】雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識(shí)教學(xué)點(diǎn)使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點(diǎn)在與橢圓的類比中獲得雙曲線的知識(shí),從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點(diǎn)本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個(gè)比較深刻的認(rèn)識(shí).二、教材分析1.重點(diǎn):雙曲線的定義和雙曲線
2025-08-04 07:08