【正文】
2Ph. D. Student, Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712, PH: 5122329216。由此可以比較兩種分析方法在不同周期、不同荷載情況,即矩形、三角形和 IBC(k=2)下四種框架結(jié)構(gòu)的結(jié)果。 框架結(jié)構(gòu)的非線性時(shí)程分析 前面對(duì)框架結(jié)構(gòu)進(jìn)行了靜力彈塑性分析,下面用非線性時(shí)程分析法對(duì)其進(jìn)行分析。 Icr取總慣性矩 Ig的一半。 荷載標(biāo)準(zhǔn)的確定時(shí)基于設(shè)計(jì)參數(shù)中的慣性力的分布。靜力彈塑性分析法可以用來(lái)識(shí)別地震的危險(xiǎn),并選擇性能等級(jí)以此來(lái)設(shè)計(jì)性能目標(biāo)。 框架結(jié)構(gòu)的描述 有著典型截面和鋼筋的 8和 15層的鋼筋混凝土框架結(jié)構(gòu)見(jiàn)圖 1,這些鋼筋混凝土結(jié)構(gòu)是按 Turkish 規(guī)范設(shè)計(jì)。這四種結(jié)構(gòu)用非線性程序 DRAIN2D (Prakash, V., Powell, G., Campbell, S., 1993)來(lái)分析,并把其結(jié)果與記錄的相應(yīng)數(shù)據(jù)比較。 關(guān)鍵詞: 靜力彈塑性分析、非線性時(shí)程分析、荷載形式、抗彎矩框架 前言 一般的抗震設(shè)計(jì)中僅僅只有安全和碰撞是在地震設(shè)計(jì)規(guī)范中明確要求避免的,抗震設(shè)計(jì)一般基于結(jié)構(gòu)在地震中的性能表現(xiàn)。 2博士 , 土木工程學(xué)院 , 得克薩斯 大學(xué) , 奧斯汀 , TX 78712, PH: 5122329216。這篇論文將比較分別利用靜力彈塑性分析法與非線性時(shí)程分析法分析所得到的結(jié)果。 這項(xiàng)研究的目的是通過(guò)彈塑性分析法和非線性時(shí)程分析法來(lái)評(píng)估框架結(jié)構(gòu)的性能或多種荷載形式及自然周期的多樣性。這些數(shù)據(jù)選至發(fā)生在世界不同地方的毀滅性地震,其中地震的名稱、數(shù)據(jù)源、記錄名稱、加速度峰值、有效期及過(guò)期類型都在表 1中給出。 8層和 15層的框架結(jié)構(gòu)的周期分別為 s和 ,兩者的框架梁截面為矩形,寬 25 cm、高 55cm。 在詳細(xì)設(shè)計(jì)了鋼筋混凝土框架結(jié)構(gòu)后,就用靜力彈塑性分析法評(píng)估結(jié)構(gòu)的地震反應(yīng),為此電腦程序 Drain 2D會(huì)被用到。梁柱單元用于結(jié)構(gòu)分析,假定梁在水平方向是剛性的,考慮非彈性影 響單元是鉸接的,而應(yīng)變強(qiáng)化被忽略。曲線中曲率的變化表明了不同結(jié)構(gòu)單元屈服情況,首先是梁屈服,接著是柱屈服和各單元的剪切破壞。這些數(shù)據(jù)取自 A、 B、 C、 D四類地區(qū),來(lái)用于非線性時(shí)程分析。 如圖 6所示,在所選的地表 運(yùn)動(dòng)數(shù)據(jù)下,非線性時(shí)程分析法在三角形荷載、矩形荷載和 IBC(k=2)荷載情況的結(jié)果相互比較知:靜力彈塑性曲線在高層框架結(jié)構(gòu)( 8和 15層框架結(jié)構(gòu))下與非線性時(shí)程分析得出的結(jié)構(gòu)不是很相符。 rectangular, triangular and IBC (k=2). CONCLUSIONS After designing and detailing the reinforced concrete frame structures, a nonlinear pushover analysis and nonlinear dynamic time history analysis are carried out for evaluating the structural seismic response for the acceptance of load distribution for inelastic behavior. It is assumed for pushover analysis that seismic demands at the target displacement are approximately maximum seismic demands during the earthquake. According to Figures 2, 3, 4 and 5, for higher story frame structures, first yielding and shear failure of the columns is experienced at the larger story displacements and rectangular distribution always give the higher base shearweight ratio paring to other load distributions for the corresponding story displacement. As it is presented in Figure 6, nonlinear static pushover analyses for IBC (k=2), rectangular, and triangular load distribution and nonlinear time history analyses results for the chosen ground motion data (all of them are nearfield data) are pared. Pushover curves do not match with nonlinear dynamic time history analysis results especially for higher story reinforced pushover analyses results for rectangular load distribution estimate maximum seismic demands during the given earthquakes more reasonable than the other load distributions, IBC (k=2), and triangular. REFERENCES 1. ATC40 (1996), “Seismic evaluation and Retrofit of Concrete Buildings”, , Applied Technology Council, Redwood City, CA. 2. FEMA 273 (1997). “NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency”, Washington . 3. IBC (2020) “International Building Code”. 4. Prakash, V., Powell, G., Campbell, S. (1993), DRAIN 2D User Guide V , University of California at Berkeley, CA. 5. Li, . (1996), “NonLinear Time History And Pushover Analyses for Seismic Design and Evaluation” PhD Thesis, University of Texas, Austin, TX. 6. Vision 2020 Committee (1995). Structural Engineering Association of California, CA. Table 1. Ground Motion Data Used in the Analyses No Earthq. Date Source Record Pga Class Type No Earthq. Date Source Record Pga Class Type 1 Park field 06/28/1 966 CDM G C1232 0 B StrikeSlip 26 Cent ral Calif 01/20/1 960 USGS BHC H2 71 C 2 Morg a n Hill 04/24/1 984 CDM G GIL06 7 B Strik e S lip 27 Impe ria l Valle y 10/15/1 979 USGS HE03 140 D StrikeSlip 3 Koca eli 08/17/1 999 KOE R I ARC 00 0 B StrikeSlip 28 Impe ria l Valle y 10/15/1 979 USGS AE03 140 D StrikeSlip 4 Morg a n Hill 04/24/1 984 CDM G G060 90 B Strik e S lip 29 Kobe 01/16/1 995 OSA0 00 D Strik e S lip 5 Lytle Cree k 09/12/1 970 USGS WTW 115 B Reve r se Obliqu e 30 Kobe 01/16/1 995 CUE SHI0 00 D StrikeSlip 6 N. Palm Spring s 07/081 986 CDM G DSP 000 B Reve r se Obliqu e 31 Coyot e Lake 08/06/1 979 CDM G G030 50 C StrikeSlip 7 N. Palm Spring s 07/081 986 USGS FVR 04 5 B Reve r se Obliqu e 32 Northridge 01/17/1 994 USC BLF206 D Reve r se Norm al 8 N. Palm Spring s 07/081 986 USGS MVH UP B Reve r se Obliqu e 33 Westm or e lan d 04/26/1 981 USGS WLF UP D StrikeSlip 9 Santa Barb a ra 08/13/1 978 USGS SBA22 2 B Reve r se Obliqu e 34 Coyot e Lake 08/06/1 979 CDM G G043 60 C StrikeSlip 10 Whittie r Narr ow 10/04/1 987 CDM G BAL H 270 B Reve r se Obliqu e 35 Hollist r 11/28/1 974 USGS AHC H 27 1 C StrikeSlip 11 Anza (Hors e Cany) 02/25/1 980 USGS AZF3 15 A StrikeSlip 36 Impe ria l Valle y 05/19/1 940 USGS IELC 1 80 C StrikeSlip 12 Anza (Hors e Cany 02/25/1 980 USGS PFT1 35 A StrikeSlip 37 Coyot el Lake 08/06/1 979 CDM G SBJ UP B StrikeSlip 13 Anza (Hors e Cany 02/25/1 980 USGS TVY04 5 A StrikeSlip 38 Coyot el Lake 08/06/1 979 CDM G SJ3337 B StrikeSlip 14 Coyot e Lake 08/06/1 979 CDM G G013 20 A StrikeSlip 39 Coyot el Lake 08/06/1 979 CDM G SJ5337 B StrikeSlip 15 Hollist r 11/28/1 974 CDM G G012 47 A StrikeSlip 40 Impe ria l Valle y 10/15/1 940 UNA M /UC SD HAE P0 45 C StrikeSlip 16 Koca eli 08/17/1 999 ERD GBZ0 00 A StrikeSlip 41 Impe ria l