【摘要】一、換元公式二、小結(jié)思考題第四節(jié)定積分的換元法定理假設(shè)(1))(xf在],[ba上連續(xù);(2)函數(shù))(tx??在],[??上是單值的且有連續(xù)導數(shù);(3)當t在區(qū)間],[??上變化時,)(tx??的值在],[ba上變化,且a?)(??、b?)(??,則
2025-08-11 16:42
【摘要】一、問題的提出二、導數(shù)的定義四、函數(shù)可導性與連續(xù)性的關(guān)系五、小結(jié)思考題三、導數(shù)的幾何意義第一節(jié)導數(shù)概念一、問題的提出0tt?,0時刻的瞬時速度求tt考慮最簡單的變速直線運動--自由落體運動,如圖,,0tt的時刻取一鄰近于,?運動時間ts???v平均速度
2025-08-21 12:41
【摘要】一、高階導數(shù)的定義二、高階導數(shù)的求導法則三、小結(jié)思考題第三節(jié)高階導數(shù)一、高階導數(shù)的定義問題:變速直線運動的加速度.),(tfs?設(shè))()(tftv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tftvta定義.)())((,)()(lim))((,)()(
2025-08-21 12:37
【摘要】()dbafxx??定積分定義定積分的幾何意義:0lim??各部分面積的代數(shù)和可積的兩個充分條件:1.2.且只有有限個間斷點定積分的性質(zhì)(7條)§內(nèi)容回顧ix?()if?1ni??(大前提:函數(shù)有界)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aa
2025-01-20 05:32
【摘要】;)()(任意小表示AxfAxf????.的過程表示???xXx.0sin)(,無限接近于無限增大時當xxxfx?問題:如何用數(shù)學語言刻劃函數(shù)“無限接近”.第二節(jié)函數(shù)極限的定義和性質(zhì)一、自變量趨向無窮大時函數(shù)的極限XX???A??Aoxy)(xfy?A定義1.設(shè)函數(shù)大于某一正數(shù)時有定義,若
2025-07-22 11:10
【摘要】一、集合的概念二、集合的運算三、區(qū)間與鄰域第一節(jié)集合四、小結(jié)思考題一、集合的概念(set):具有確定性質(zhì)的對象的總體.組成集合的每一個對象稱為該集合的元素.,Ma?.Ma?例如:太陽系的九大行星;教室里的所有同學。如果a是集合M中的元素,則記作
【摘要】一、羅爾定理二、拉格朗日中值定理四、小結(jié)思考題三、柯西中值定理第一節(jié)中值定理一、羅爾(Rolle)定理羅爾(Rolle)定理如果函數(shù))(xf在閉區(qū)間],[ba上連續(xù),在開區(qū)間),(ba內(nèi)可導,且在區(qū)間端點的函數(shù)值相等,即)()(bfaf?,那末在),(ba內(nèi)至少有一點)
2025-08-21 12:46
【摘要】微積分積分公式積分上限的函數(shù)及其導數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應值,所以它在[a,
2025-08-12 17:45
【摘要】目錄上頁下頁返回結(jié)束第四節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程確定的函數(shù)的導數(shù)三、相關(guān)變化率隱函數(shù)和參數(shù)方程求導相關(guān)變化率第二章目錄上頁下頁返回結(jié)束一、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的
2025-07-24 09:56
【摘要】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個間斷點定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
2024-11-03 21:17
【摘要】二、數(shù)列的有關(guān)概念四、收斂數(shù)列的性質(zhì)五、小結(jié)思考題三、數(shù)列極限的定義第一節(jié)數(shù)列的極限一、引例“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”1.割圓術(shù):播放——劉徽一、引例R正六邊形的面積1A正十二邊形的面積2A????正
2025-08-21 12:40
【摘要】曲率是描述曲線局部性質(zhì)(彎曲程度)的量。1M3M2??2M2S?1S?MM?1S?2S?NN???弧段彎曲程度越大,轉(zhuǎn)角越大.轉(zhuǎn)角相同,弧段越短,彎曲程度越大一、平面曲線的曲率概念1??第十一節(jié)曲線的曲率??????S?S)?.M?.MC0Myxo.s
2025-04-21 04:19
【摘要】的函數(shù)的求導一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)返回一、隱函數(shù)的導數(shù)定義:.),(稱為隱函數(shù)由方程所確定的函數(shù)0?yxF.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩
2025-07-21 12:40
【摘要】一、基本內(nèi)容二、小結(jié)三、思考題第三節(jié)分部積分法問題d?xxex??解決思路利用兩個函數(shù)乘積的求導法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導數(shù),??,vuvuuv???????,vuuvvu?????dd,uvxuvuvx??????dd.uvuvvu????
2025-08-21 12:44
【摘要】1多元函數(shù)的微積分主要內(nèi)容:一.多元函數(shù)的概念二.二元函數(shù)的極限和連續(xù)三.偏導數(shù)的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數(shù)的極值2設(shè)D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40