【正文】
Keeffe M, Yaghi O M. Highthroughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2020, 319: 10 939943. [8] 劉漫,魯曉明,馮俊鶴,韓麗 . 美國沸石咪唑酯骨架結(jié)構(gòu)材料的研究進展 [J]. 現(xiàn)代化工, 2020,28( 5): 8184 [9] Jarvis J A J, Wells A F. The structural chemistry of cupric pounds[J]. Acta Crystallogr, 1960, 13(12): 10271028. [10] Masciocchi N, Bruni S, Cariati E, Cariati F, GaIIi S, Sironi A. Extended polymorphism in copper (ii) imidazolate polymers: A spectroscopic and XRPD structural study[J]. In. Chem, 2020, 40: 58975905. [11] Masciocchi N, CasteIIi F, Forster M P, Tafoya M Maya, Cheetham K A. Synthesis and characterization of two polymorphic crystalline phases and an amorphous powder of nickel(II) bisimidazolate[J]. In. Chem, 2020, 42: 61476152 [12] Masciocchi N, Ardizzoia A G, Brenna S, CasteIIi F, GaIIi S, Maspero A, Sironi A. Synthesis and abinitio XRPD structure of group 12 imidazolate polymers[J]. Chem. Commun, 2020: 20182019. [13] Tian Y Q, Cai C X, Ren X M, Duan C Y, Xu Y, Gao S, You X Z. The silicalike extended polymorphim of cobalt(II)imidazolate threedimensional frameworks: Xray singlecrystal structures and magic properties[J]. Chem. Eur. J., 2020, 9: 56735685. [14] Tian Y Q, Zhao Y M, Chen Z X, Zhang G N, Weng L H, Zhao D Y. Design and generation of extended zeolitic metalanic frameworks(ZMOFs) : Synthesis and crystal structures of zinc(II)imidazolate polymers with zeolitic topologies[J]. Chem. Eur. J., 2020, 13:41464154. [15] Huang X C, Zhang J P, Lin Y Y, Yu X L, Chen X M . Two mixedvalence copper(I,II)imidazolate coordination polymers: metalvalence tuning approach for new topological structures[J]. Chem. Commun., 2020: 11001101. [16] Zhang J P , Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks[J]. Chem. Commun, 2020: 16891699. [17] Huang X C, Zhang J P. A New Route to Supramolecular isomers via molecular templating: nanosized molecular polygons of copper(I)2methylimidazolates[J]. J. Am. Chem. Soc., 2020, 126: 1321813219. [18] 黃曉春等 . [Zn(bim)2](H2O):具有方鈉石拓撲結(jié)構(gòu)的金屬 — 有機敞開骨架 [J]. 科學通報,2020, 48( 14) : 14911494. [19] Zhang J P, Huang X C, Chen X M. Supramolecular isomerism in coordination polymers[J]. Chem. Soc. Rev., 2020, 38: 23852396. [20] Kyo Sung Park, Zheng Ni, Adrien P Cote, Jae Yong Choi, Rudan Huang, Fernano J. UribeRomo, Hee K. Chae. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PANS, 2020, 103(27): 1018710191. 11 [21] Wu, H, et al. Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework8[J]. Chem. Soc. 2020, 129: 53145315. [22] Hayashi H, Adrien P C, Hiroyasu F, Michael O. Zeolite A imidazolate frameworks[J]. Nat. Mater., 2020, 6: 501506 [23] Bei Liu, Berend Smith. Molecualr Simulation Studies of Separation CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. Phys. Chem. 2020, 114(18): 85158522. [24] Rees B. Rankin. Adsorption and Diffusion of Light Gases in ZIF68 and ZIF70: A Simulation Study[J]. Phys. Chem. 2020, 113:1690616914. [25] Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld G D, Chang J S, Hong D Y, Hwang Y K, Jhung S H. High uptakes of CO2 and CH4 in mesoporous metalanic frameworks MIL100 and MIL101[J]. Langmuir, 2020, 24: 72457250. [26] Banerjee R, Furukawa Hiroyasu, Britt D, Knober C, Keeffe M O, Yaghi O M, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selectivity capture properties[J]. J. Am. Chem. Soc., 2020, 131: 38753877. [27] Tian Y Q, Cai C X. [Co5(im)10 9 預期的研究成果及創(chuàng)新點 本課題的預期結(jié)果: ( 1)通過前期實驗摸索,找出 ZIF ZIF7 的最佳合成條件 ( 1)通過計算機模擬出 ZIFs的最穩(wěn)定構(gòu)型,對各個位點的荷的研究,一次作為依據(jù),來確定何種粘結(jié)劑適用于 ZIFs 材料的成型,對 ZIFs 材料的性質(zhì)影響是最小的,從而得到一套較為完備的成型條件,為后續(xù)工作做鋪墊; ( 2)考察合成的 ZIFs 對二氧化碳以及低碳烷烴、烯烴等氣體的吸附情況, 考察其對這些氣體的吸附機理,并用計算機模擬出的結(jié)果加以比較,以確定最佳吸附位置; 本課題的創(chuàng)新點如下: ( 1)運用計算機模擬完成 ZIFs 材料的最穩(wěn)定結(jié)構(gòu),以及無機、有機粘結(jié)劑的相關計算。對于成型工藝的 研究可參考的文獻還很少,考慮到 ZIFs 的結(jié)