【摘要】第一篇:基本不等式說課稿 基本不等式是主要應(yīng)用于求某些函數(shù)的最值及證明的不等式。以下是小編整理的基本不等式說課稿,希望對大家有幫助! 基本不等式說課稿1 尊敬的各位考官大家好,我是今天的X號考生...
2024-10-28 11:36
【摘要】第一篇:基本不等式練習(xí)題 重難點:了解基本不等式的證明過程;會用基本不等式解決簡單的最大(小)值問題.考綱要求:①了解基本不等式的證明過程. ②會用基本不等式解決簡單的最大(?。┲祮栴}.經(jīng)典例...
2024-10-29 01:07
【摘要】基本不等式在求最值中的應(yīng)用與完善楊亞軍函數(shù)的最值是函數(shù)這一章節(jié)中很重要的部分,它的重要性不僅在題型的多樣、方法的靈活上,更主要的是其在實際生活及生產(chǎn)實踐中的應(yīng)用。高考應(yīng)用題幾乎都與最值問題有關(guān),,才能更好地去解決實際應(yīng)用問題。一、基本不等式的內(nèi)容及使用要點1、二元基本不等式:①a,b∈R時,a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時“=”號成立);②a,b≥0時,a+b
2025-08-05 01:31
【摘要】基本不等式習(xí)題課一知識復(fù)習(xí)1.基本不等式:對任意a、b∈____,有a+b2≥ab成立,當(dāng)且僅當(dāng)a=b時取等號.(1)x、y∈(0,+∞),且xy=P(定值),那么當(dāng)x=y(tǒng)時,x+y有最___值2P.(2)x、y∈(0,+∞),且x+
2025-08-05 04:43
【摘要】§3.4基本不等式:(一)教案咸寧高中:徐浩全◆內(nèi)容分析本節(jié)課是《數(shù)學(xué)必修(5)》第三章第四節(jié)基本不等式的內(nèi)容。在前幾節(jié)課剛剛學(xué)習(xí)了不等式的性質(zhì)、一元二次不等式、二元一次不等式(組)與線性規(guī)劃問題,這些內(nèi)容為本節(jié)課打下了堅實的基礎(chǔ);同時,基本不等式的學(xué)習(xí)為今后解決最值問題提供了新的方法,為不等式的證明提供了有力的幫助,在高中數(shù)學(xué)中有著重要的地位,是高考的重點內(nèi)容。本節(jié)內(nèi)容
2025-04-16 12:12
【摘要】基本不等式作業(yè)(一)1.下列不等式成立的是()A.a(chǎn)bba??2B.abba???2C.21??xxD.2122??xx2.若a∈R,下列不等式恒成立的是()+1aB.1112??aC.a2+96aD.lg(a2+1
2024-11-23 13:45
【摘要】(第一課時)導(dǎo)學(xué)案【課程標(biāo)準(zhǔn)要求】①探索并了解基本不等式的證明過程.②會用基本不等式解決簡單的最大(小)值問題.【學(xué)習(xí)目標(biāo)】①經(jīng)歷由幾何圖形抽象出重要不等式的過程,會用比較法證明重要不等式;②經(jīng)歷由重要不等式代換獲得基本不等式的過程,知道與的相等與不等關(guān)系及等號成立的條件;矚慫潤厲釤瘞睞櫪廡賴賃軔朧礙鱔絹。③經(jīng)歷從不同角度探索基本不等式的證明過程,加深認(rèn)識基本不等
2025-04-16 12:23
【摘要】基本不等式(第一課時)教學(xué)設(shè)計及反思?人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(必修5)》中的“基本不等式”。下面把這節(jié)課的教學(xué)設(shè)計、教后反思記錄下來,愿與同行研討?!盎静坏仁健笔潜匦?的重點內(nèi)容,在課本封面上就體現(xiàn)出來了。它是在學(xué)完“不等式的性質(zhì)”、“不等式的解法”及“線性規(guī)劃”的基礎(chǔ)上對不等式的進(jìn)一步研究.在不等式的證明和求最值過程中有著廣泛的應(yīng)用。求最值又是
2025-08-05 04:52
【摘要】基本不等式【學(xué)習(xí)目標(biāo)】ab?2ba?的證明方法,要求學(xué)生掌握算術(shù)平均數(shù)與幾何平均數(shù)的意義,并掌握“均值不等式”及其推導(dǎo)過程。.【學(xué)習(xí)重難點】理解利用基本不等式ab?2ba?求函數(shù)的最值問題【類法通解】1.利用基本不等式求最值,必須按照“一正,二定,三相等”的原則,即(1)一正:符合基
2024-11-23 12:48
【摘要】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當(dāng)當(dāng)且僅那么如果?????baabbaRba;)(2,,)2
2025-07-25 15:38
【摘要】基本不等式的綜合應(yīng)用基本不等式是人教版高中數(shù)學(xué)必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學(xué)們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學(xué)中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡記為“和定積最大”(2)當(dāng)且時,,當(dāng)且僅當(dāng)時等號成立,簡
2025-07-23 12:30
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學(xué)們學(xué)習(xí)不等式要重過學(xué)經(jīng)我們已Rbaabba???222.,,,,等號成立時且僅當(dāng)當(dāng)那么如果定理baabbaRba????2122??.,,,,成立等號時當(dāng)且僅當(dāng)所以時等號成立當(dāng)且僅因為證明bababaabb
2025-08-05 17:11
【摘要】:學(xué)案(第一課時)一、學(xué)習(xí)目標(biāo)基本不等式:適用條件:二、典型例題例1.(1)已知正數(shù)滿足,則的最小值是.(2)已知正數(shù)滿足,則的最大值是.變式:已知,則的最小值是.(3)在下列條件中,最小值為2的是()A.()B.()
2025-08-17 05:25
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【摘要】基本不等式經(jīng)典習(xí)題1、已知x,y為正數(shù),則的最大值為▲2.實數(shù)、、滿足,則的最大值為▲.3、已知正實數(shù)x,y滿足,則xy的取值范圍為▲.【答案】[1,]4、設(shè)x,y是正實數(shù),且x+y=1,則的最小值為▲455.(浙江理16)設(shè)為實數(shù),若則的最大值是.6、(2010
2025-06-24 16:38