freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

歷年中考數(shù)學(xué)易錯(cuò)題匯編-二次函數(shù)練習(xí)題附答案-免費(fèi)閱讀

  

【正文】 ∴MN==,∴拋物線需要向下平移的距離==.②如圖,當(dāng)點(diǎn)A′在平行于x軸的D點(diǎn)的特征線時(shí),設(shè)A′(p,3),則OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,設(shè)P(4,c)(c>0),在Rt△A′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,),∴直線OP解析式為y=x,∴N(2,),∴拋物線需要向下平移的距離=3﹣=.綜上所述:拋物線向下平移或距離,其頂點(diǎn)落在OP上.點(diǎn)睛:此題是二次函數(shù)綜合題,主要考查了折疊的性質(zhì),正方形的性質(zhì),解答本題的關(guān)鍵是用正方形的性質(zhì)求出點(diǎn)D的坐標(biāo).10.如圖,已知拋物線的頂點(diǎn)為,與軸相交于點(diǎn),對(duì)稱軸為直線,點(diǎn)是線段的中點(diǎn).(1)求拋物線的表達(dá)式;(2)寫(xiě)出點(diǎn)的坐標(biāo)并求直線的表達(dá)式;(3)設(shè)動(dòng)點(diǎn),分別在拋物線和對(duì)稱軸l上,當(dāng)以,為頂點(diǎn)的四邊形是平行四邊形時(shí),求,兩點(diǎn)的坐標(biāo).【答案】(1);(2),;(3)點(diǎn)、的坐標(biāo)分別為或、或.【解析】【分析】(1)函數(shù)表達(dá)式為:,將點(diǎn)坐標(biāo)代入上式,即可求解; (2)、則點(diǎn),設(shè)直線的表達(dá)式為:,將點(diǎn)坐標(biāo)代入上式,即可求解; (3)分當(dāng)是平行四邊形的一條邊、是平行四邊形的對(duì)角線兩種情況,分別求解即可.【詳解】解:(1)函數(shù)表達(dá)式為:,將點(diǎn)坐標(biāo)代入上式并解得:,故拋物線的表達(dá)式為:;(2)、則點(diǎn),設(shè)直線的表達(dá)式為:,將點(diǎn)坐標(biāo)代入上式得:,解得:,故直線的表達(dá)式為:;(3)設(shè)點(diǎn)、點(diǎn),①當(dāng)是平行四邊形的一條邊時(shí),點(diǎn)向左平移2個(gè)單位、向下平移4個(gè)單位得到,同樣點(diǎn)向左平移2個(gè)單位、向下平移4個(gè)單位得到,即:,解得:,故點(diǎn)、的坐標(biāo)分別為;②當(dāng)是平行四邊形的對(duì)角線時(shí),由中點(diǎn)定理得:,解得:,故點(diǎn)、的坐標(biāo)分別為;故點(diǎn)、的坐標(biāo)分別為,或、或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到一次函數(shù)、平行四邊形性質(zhì)、圖象的面積計(jì)算等,其中(3),要主要分類(lèi)求解,避免遺漏.11.如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為x=﹣1.(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);(2)若動(dòng)點(diǎn)P在第二象限內(nèi)的拋物線上,動(dòng)點(diǎn)N在對(duì)稱軸l上.①當(dāng)PA⊥NA,且PA=NA時(shí),求此時(shí)點(diǎn)P的坐標(biāo);②當(dāng)四邊形PABC的面積最大時(shí),求四邊形PABC面積的最大值及此時(shí)點(diǎn)P的坐標(biāo).【答案】(1)y=﹣(x+1)2+4,頂點(diǎn)坐標(biāo)為(﹣1,4);(2)①點(diǎn)P(﹣﹣1,2);②P(﹣ ,)【解析】試題分析:(1)將B、C的坐標(biāo)代入已知的拋物線的解析式,由對(duì)稱軸為即可得到拋物線的解析式;(2)①首先求得拋物線與x軸的交點(diǎn)坐標(biāo),然后根據(jù)已知條件得到PD=OA,從而得到方程求得x的值即可求得點(diǎn)P的坐標(biāo);②,表示出來(lái)得到二次函數(shù),求得最值即可.試題解析:(1)∵拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸l為,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4);(2)令,解得或,∴點(diǎn)A(﹣3,0),B(1,0),作PD⊥x軸于點(diǎn)D,∵點(diǎn)P在上,∴設(shè)點(diǎn)P(x,),①∵PA⊥NA,且PA=NA,∴△PAD≌△AND,∴OA=PD,即,解得x=(舍去)或x=,∴點(diǎn)P(,2);②設(shè)P(x,y),則,∵=OB?OC+AD?PD+(PD+OC)?OD=====,∴當(dāng)x=時(shí),=,當(dāng)x=時(shí),=,此時(shí)P(,).考點(diǎn):1.二次函數(shù)綜合題;2.二次函數(shù)的最值;3.最值問(wèn)題;4.壓軸題.12.如圖,已知直線與拋物線: 相交于和點(diǎn)兩點(diǎn).⑴求拋物線的函數(shù)表達(dá)式;⑵若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】⑴;⑵當(dāng) ,□MANB=△= ,此時(shí);⑶存在. 當(dāng)時(shí),無(wú)論取任何實(shí)數(shù),均有. 理由見(jiàn)解析.【解析】【分析】(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入y=ax2+2x+c即可求得二次函數(shù)的解析式;(2)過(guò)點(diǎn)M作MH⊥x軸于H,交直線AB于K,求出直線AB的解析式,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),利用函數(shù)思想求出MK的最大值,再求出△AMB面積的最大值,可推出此時(shí)平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);(3)如圖2,分別過(guò)點(diǎn)B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對(duì)稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,其中F(1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.【詳解】(1)由題意把點(diǎn)(1,0)、(2,3)代入y=ax2+2x+c,得,解得a=1,c=3,∴此拋物線C函數(shù)表達(dá)式為:y=x2+2x+3;(2)如圖1,過(guò)點(diǎn)M作MH⊥x軸于H,交直線AB于K,將點(diǎn)(1,0)、(2,3)代入y=kx+b中,得,解得,k=1,b=1,∴yAB=x+1,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),則MK=a2+2a+3(a+1)=(a)2+,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時(shí),MK有最大長(zhǎng)度,∴S△AMB最大=S△AMK+S△BMK=MK?AH+MK?(xBxH)=MK?(xBxA)=3=,∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時(shí),S最大=2S△AMB最大=2=,M(,);(3)存在點(diǎn)F,∵y=x2+2x+3=(x1)2+4,∴對(duì)稱軸為直線x=1, 當(dāng)y=0時(shí),x1=1,x2=3,∴拋物線與點(diǎn)x軸正半軸交于點(diǎn)C(3,0),如圖2,分別過(guò)點(diǎn)B,C作直線y=的垂線,垂足為N,H,拋物線對(duì)稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,設(shè)F(1,a),連接BF,CF,則BF=BN=3=,CF=CH=,由題意可列:,解得,a=,∴F(1,).【點(diǎn)睛】此題考查了待定系數(shù)法求解析式
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1