freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

任意角三角函數(shù)的概念解讀-預(yù)覽頁

2024-10-25 15:32 上一頁面

下一頁面
 

【正文】 義域)對于確定的角a,上面三個函數(shù)值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),我們將它們統(tǒng)稱為三角函數(shù)。練習(xí):計算的各三角函數(shù)值。如何用數(shù)學(xué)的方法來刻畫這種變化?從這節(jié)課開始,我們要來學(xué)習(xí)刻畫這種規(guī)律的數(shù)學(xué)模型之一――三角函數(shù)。四、讓學(xué)生在任意角三角函數(shù)概念的形成過程中,體會函數(shù)思想,體會數(shù)形結(jié)合思想。精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值(此題由學(xué)生自己分析獨立動手完成)例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?從而引出函數(shù)極其定義域由學(xué)生分析討論,得出結(jié)論知識點二:三個三角函數(shù)的定義域同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論, 讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶例題2:已知A在第二象限且 sinA=0。教學(xué)過程分析總體來說, 由舊及新,由易及難,逐步加強,逐步推進(jìn)先由初中的直角三角形中銳角三角函數(shù)的定義過度到直角坐標(biāo)系中銳角三角函數(shù)的定義再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。——培根第二篇:《任意角三角函數(shù)》說課稿《任意角三角函數(shù)》說課稿《任意角三角函數(shù)》說課稿1各位同仁,各位專家:我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1?!芽▋?學(xué)習(xí)永遠(yuǎn)不晚。1一日不讀口生,一日不寫手生。——顏真卿寶劍鋒從磨礪出,梅花香自苦寒來。讀書破萬卷,下筆如有神。第一篇:任意角三角函數(shù)的概念解讀“任意角三角函數(shù)的概念”教學(xué)設(shè)計陶維林(江蘇南京師范大學(xué)附屬中學(xué))一.內(nèi)容和內(nèi)容解析三角函數(shù)是一個重要的基本初等函數(shù),它是描述周期現(xiàn)象的重要數(shù)學(xué)模型.它的基礎(chǔ)主要是幾何中的相似形和圓,研究方法主要是代數(shù)中的圖象分析和式子變形,三角函數(shù)的研究已經(jīng)初步把幾何與代數(shù)聯(lián)系起來.它在物理學(xué)、天文學(xué)、測量學(xué)等學(xué)科中都有重要的應(yīng)用,它是解決實際問題的重要工具,它是學(xué)習(xí)數(shù)學(xué)中其他學(xué)科的基礎(chǔ).角的概念已經(jīng)由銳角擴展到0176。書山有路勤為徑,學(xué)海無涯苦作舟。黑發(fā)不知勤學(xué)早,白首方悔讀書遲?!悏?書是人類進(jìn)步的階梯?!懹?讀一本好書,就如同和一個高尚的人在交談——歌德1讀一切好書,就是和許多高尚的人談話。——孔子讀書給人以快樂、給人以光彩、給人以才干。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。2。德育目標(biāo):(1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法教法學(xué)法:溫故知新,逐步拓展(1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;(2)通過例題講解分析,逐步引出新知識,完善三角定義運用多媒體工具(1)提高直觀性增強趣味性。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示, 從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了從而得到知識點一:任意一個角的三角函數(shù)的定義提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。三、通過學(xué)生積極參與知識的“發(fā)現(xiàn)”與“形成”的過程,培養(yǎng)合情猜測的能力,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性。授課過程:一、引入在我們的現(xiàn)實世界中的許多運動變化都有循環(huán)往復(fù)、周而復(fù)始的現(xiàn)象,這種變化規(guī)律稱為周期性。指出sina=mP的函數(shù)依舊表示一個比值,不過其分母為1而已。四、解析任意角三角函數(shù)的定義三角函數(shù)首先是函數(shù)。已知角,求a的三角函數(shù)值。六、小結(jié)及作業(yè)教案設(shè)計說明:新教材的教學(xué)理念之一是讓學(xué)生去體驗新知識的發(fā)生過程,這節(jié)《任意角三角函數(shù)》的教案,主要圍繞這一點來設(shè)計。這樣也有助于學(xué)生對任意角三角函數(shù)概念的理解。一、教材結(jié)構(gòu)與內(nèi)容簡析本節(jié)內(nèi)容在全書及章節(jié)的地位:三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學(xué)模型,有非常廣泛的應(yīng)用。三角函數(shù)的定義在教材中起著承前啟后的作用,一方面,通過這部分內(nèi)容的學(xué)習(xí),可以幫助學(xué)生更加深入理解函數(shù)這一基本概念,另一方面它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備。二、教學(xué)重點、難點、關(guān)鍵教學(xué)重點:任意角的三角函數(shù)的定義,三角函數(shù)的符號規(guī)律。:通過學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。(一)創(chuàng)設(shè)情境——揭示課題問題1:在初中我們學(xué)習(xí)了銳角三角函數(shù),那么銳角三角函數(shù)是如何定義的?【設(shè)計意圖】學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展)。用角的對邊、鄰邊、斜邊比值的說法顯然是受到阻礙了,由于前面已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù)。得出結(jié)論(強調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,六個比值分別是以角α為自變量、。(關(guān)于值域,到后面再學(xué)習(xí))【設(shè)計意圖】定義域是函數(shù)三要素之一,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握。分析:終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義)師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點?!驹O(shè)計意圖】判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的“才”字符號法則,這也是理解和記憶的關(guān)鍵。七、簡述板書設(shè)計。《任意角三角函數(shù)》說課稿4一、教學(xué)目標(biāo)1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號判斷);了解任意角的余切、正割、余割函數(shù)的定義.2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、豐富數(shù)形結(jié)合的經(jīng)驗.3.培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.4.培養(yǎng)學(xué)生求真務(wù)實、實事求是的科學(xué)態(tài)度.二、重點、難點、關(guān)鍵重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號判斷法.難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù).關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).三、教學(xué)理念和方法教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程.根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué).四、教學(xué)過程[執(zhí)教線索:回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)問題情境:能推廣到任意角嗎?它山之石:建立直角坐標(biāo)系(為何?)優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)探索發(fā)展:對任意角研究六個比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)自主定義:任意角三角函數(shù)定義登高望遠(yuǎn):三角函數(shù)的要素分析(對應(yīng)法則、定義域、值域與正負(fù)符號判定)例題與練習(xí)回顧小結(jié)布置作業(yè)](一)復(fù)習(xí)引入、回想再認(rèn)開門見山,面對全體學(xué)生提問:在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?探索任意角的三角函數(shù)(板書課題),請同學(xué)們回想,再明確一下:(情景1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?讓學(xué)生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強調(diào):傳統(tǒng)定義:設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.設(shè)計意圖:函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對三角函數(shù)的學(xué)習(xí)就是一個從一般到特殊的演繹的過程,:學(xué)生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識和認(rèn)知準(zhǔn)備.(情景2)我們在初中通過銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、:這三個三角函數(shù)分別是怎樣規(guī)定的?學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強調(diào):設(shè)計意圖:學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展).溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少.(二)引伸鋪墊、創(chuàng)設(shè)情景(情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo).能推廣嗎?怎樣推廣?、臨邊、斜邊比值的說法顯然是受到阻礙了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù).設(shè)計意圖:從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程.教師對學(xué)生回答情況進(jìn)行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!師生共做(學(xué)生口述,教師板書圖形和比值):把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構(gòu)造一個RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應(yīng)列出三個倒數(shù)比值:設(shè)計意圖:此處做法簡單,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對某些知識進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴展,從實數(shù)到復(fù)數(shù)的擴展等).(情景4)各個比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?追問:銳角α大小發(fā)生變化時,比值會改變嗎?先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。取特殊點能使計算更簡明。270176。1節(jié)。緊緊扣住三角函數(shù)定義這個寶貴的源泉,可以自然地導(dǎo)出本章的具體內(nèi)容:三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關(guān)系、多組誘導(dǎo)公式、多組變換公式、圖象和性質(zhì)。數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識,更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識,因此本節(jié)課在教學(xué)中力圖向?qū)W生展示嘗試類比、數(shù)形結(jié)合等數(shù)學(xué)思想方法。三、學(xué)情分析學(xué)生已經(jīng)掌握的內(nèi)容及學(xué)生學(xué)習(xí)能力1。3。四、教學(xué)目標(biāo)根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征 ,我制定如下教學(xué)目標(biāo):1。情感目標(biāo):通過學(xué)習(xí),滲透數(shù)形結(jié)合和類比的數(shù)學(xué)思想,培養(yǎng)學(xué)生良好的思維習(xí)慣。先由初中的直角三角形中銳角三角函數(shù)的定義,過度到直角坐標(biāo)系中銳角三角函數(shù)的定義,再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義。能表示嗎?怎樣表示?針對剛才的問題點名讓學(xué)生回答。問題 4:對于確定的角 ,這三個比值是否與P在 的終邊上的位置有關(guān)?為什么?先讓學(xué)生想象思考,作出主觀判斷,再引導(dǎo)學(xué)生觀察右圖,聯(lián)系相似三角形知識,探索發(fā)現(xiàn): 對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù),對數(shù)學(xué)學(xué)習(xí)能力較好的同學(xué)起到了很好的指導(dǎo)作用。 指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握。例2。取特殊點能使計算更簡明。(四)總結(jié)反思——提高認(rèn)識由學(xué)生總結(jié)本節(jié)課所學(xué)習(xí)的主要內(nèi)容:⑴任意角的三角函數(shù)的定義及其定義域;⑵三角函數(shù)的符號規(guī)律。ctα、cscα、secα的定義寫在sinα、csα、tanα的左下方,突出本節(jié)重要內(nèi)容的主體地位。~3601
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1