【摘要】主講老師:余弦公式復(fù)習(xí)引入?)3045cos(15cos,2330cos,2245cosooooo?????由此我們能否得到初中時我們知道復(fù)習(xí)引入?30cos45cosoo呢是不是等于?猜想:?)3045cos(15cos,2330
2025-10-31 08:12
【摘要】兩角和與差的余弦一、教學(xué)目標(biāo):經(jīng)歷兩角和與差的余弦公式的推導(dǎo)過程,了解兩角和與差的余弦公式,并初步運用兩角和與差的余弦公式,解決較簡單的相關(guān)數(shù)學(xué)問題。2能力目標(biāo):培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生的觀察能力,邏輯推理能力和合作學(xué)習(xí)能力。:通過觀察、對比體會數(shù)學(xué)的對稱美和諧
2025-11-09 16:43
【摘要】第三章三角恒等變換兩角和與差的余弦公式【學(xué)習(xí)目標(biāo)】1、理解向量法推導(dǎo)兩角和與差的余弦公式,并能初步運用解決具體問題;2、應(yīng)用公C)(???式,求三角函數(shù)值.3、培養(yǎng)探索和創(chuàng)新的能力和意見.【學(xué)習(xí)重點難點】向量法推導(dǎo)兩角和與差的余弦公式【學(xué)習(xí)過程】(一)預(yù)習(xí)指導(dǎo)探究cos(α+β
2025-11-19 16:29
【摘要】名稱簡記符號公式使用條件兩角和的余弦兩角差的余弦+C??()C???()cos()coscossinsin?????????cos()coscossinsin?????????,R???,R???名
2025-11-25 18:51
【摘要】不用計算器,求的值.1.15°能否寫成兩個特殊角的和或差的形式?2.cos15°=cos(45°-30°)=cos45°-cos30°成立嗎?
2025-10-31 04:48
【摘要】二倍角的正弦、余弦、正切公式知識點及角度難易度及題號基礎(chǔ)中檔稍難化簡求值問題1、2、4、6給值(式)求值問題57、8、9綜合問題310、11121.2-sin22+cos4的值是()A.sin2B.-cos2C.3cos2D.-
2025-11-26 06:46
【摘要】二倍角的正弦、余弦、正切公式一、三角變換中的“一致代換”法在三角變換中,“一致代換”法是一種重要的方法,所謂“一致代換”法,即在三角變換中,化“異角”“異名”“異次”為“同角”“同名”“同次”的方法.它主要包括:在三角函數(shù)式中,①如果只含同角三角函數(shù),一般應(yīng)從變化函數(shù)名稱入手,盡量化
2025-11-26 01:55
【摘要】兩角和與差的正弦、余弦、正切公式新課導(dǎo)入想一想:cos15????????30sin45sin30cos45cos42621222322??????那呢?cos75cos15cos(4530)??cos75?cos(3
2025-06-06 00:45
【摘要】兩角和與差的余弦公式一.學(xué)習(xí)要點:兩角和與差的余弦公式及其簡單應(yīng)用。二.學(xué)習(xí)過程:1.兩角和與差的余弦公式及推導(dǎo):公式:
2025-11-18 23:39
【摘要】不查表,求cos(–375°)的值.解:cos(–375°)=cos375°=cos(360°+15°)=cos15°1.15°能否寫成兩個特殊角的和或差的形式?2.
2025-10-31 23:32
【摘要】兩角和與差的正弦、余弦和正切公式第1題.已知15sin17??,?是第二象限角,求cos3????????π的值.答案:153834?.第2題.已知2sin3???,3,2??????????,3cos4??,3,22??????????,求??cos???
2025-11-23 10:14
【摘要】兩角和與差的余弦一、知識掃描cos(α-β)=二、課堂探究1.探究?coscos)cos(???????2.探究cos(???)的公式思考?.1角函數(shù)線來探求公式怎樣聯(lián)系單位圓上的三(1)怎樣構(gòu)造角?和角????(注意:要與它們
【摘要】§兩角和與差的余弦(課前預(yù)習(xí)案)班級:___姓名:________編寫:一、新知導(dǎo)學(xué)1、公式)(???C:cos(-)???令?=-(??)得)(???C:cos()????特征:①
【摘要】3.二倍角的正弦、余弦和正切公式命題方向1用倍角公式化簡例1化簡三角函數(shù)式:2cos8+2-2sin8+1.[分析]將根號下的式子化為完全平方式,再開出來運算.[解析]原式=4cos24-21+2sin4cos4=2|cos4|-2|sin4+cos4|,∵π43π2,
【摘要】《兩角和與差的余弦公式》教學(xué)設(shè)計一、教材地位和作用分析:兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,是后繼內(nèi)容二倍角公式、和差化積、積化和差公式的知識基礎(chǔ),對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有重要的支撐作用。本課時主要講授平面內(nèi)兩點間距離公式、兩角和與差的余弦公式以及誘導(dǎo)公式。二、教學(xué)目標(biāo):1、知識目標(biāo)
2025-05-11 22:45