【摘要】第一篇:高中立體幾何 高中立體幾何的學(xué)習(xí) 高中立體幾何的學(xué)習(xí)主要在于培養(yǎng)空間抽象能力的基礎(chǔ)上,發(fā)展學(xué)生的邏輯思維能力和空間想象能力。立體幾何是中學(xué)數(shù)學(xué)的一個(gè)難點(diǎn),學(xué)生普遍反映“幾何比代數(shù)難學(xué)”。但...
2024-11-15 06:58
【摘要】第一篇:立體幾何證明中常用知識(shí)點(diǎn) 立體幾何證明中常用知識(shí)點(diǎn) 一、判定兩線(xiàn)平行的方法 1、平行四邊形 2、中位線(xiàn)定理 3、如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條...
2024-11-12 12:29
【摘要】第一篇:立體幾何教材分析 《數(shù)學(xué)必修模塊2》立體幾何教材分析 長(zhǎng)沙市二十六中 為了更好地組織實(shí)施好本模塊的教學(xué),我們高一年級(jí)數(shù)學(xué)備課組成員以問(wèn)題為載體,主要對(duì)如下課題進(jìn)行了研究:(1)課標(biāo)中所提...
2024-11-15 06:00
【摘要】立體幾何之外接球秒殺第一種長(zhǎng)方體正方體模型長(zhǎng)方體各頂點(diǎn)可在一個(gè)球面上,長(zhǎng)為abc,,,其體對(duì)角線(xiàn)為l.當(dāng)球?yàn)殚L(zhǎng)方體的外接球時(shí),截面圖為長(zhǎng)方體的對(duì)角面和其外接圓,故球的半徑例1(1)已知各頂點(diǎn)都在同一球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是()A.16pB.20pC.24
2025-07-24 12:09
【摘要】立體幾何之外接球問(wèn)題一講評(píng)課1課時(shí)總第課時(shí)月日1、已知如圖所示的三棱錐的四個(gè)頂點(diǎn)均在球的球面上,和所在的平面互相垂直,,,,則球的表面積為(?)A.B.C.D.2、設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長(zhǎng)都為,頂點(diǎn)都在一個(gè)球面上,則該球的表面積為(??)A.B.C.D
2025-06-25 00:21
【摘要】立體幾何專(zhuān)題之二面角問(wèn)題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡(jiǎn)述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問(wèn)題高考情況簡(jiǎn)述?除2022年北京
2025-07-20 07:01
【摘要】三視圖問(wèn)題分類(lèi)解答例1、概念問(wèn)題1、下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是.(填序號(hào))2、如圖,折線(xiàn)表示嵌在玻璃正方體內(nèi)的一根鐵絲,請(qǐng)把它的三視圖補(bǔ)充完整.3、已知某個(gè)幾何體的三視圖如下圖所示,試根據(jù)圖中所標(biāo)出的尺寸(單位:㎝),可得這個(gè)幾何體的體積是.4、已知某個(gè)幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【摘要】1用空間向量處理立體幾何的問(wèn)題立體幾何著重的是研究點(diǎn)、線(xiàn)、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線(xiàn)與直線(xiàn)、直線(xiàn)與平面、平面與平面)以及三種角(異面直線(xiàn)所成的角、直線(xiàn)與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來(lái),純粹用立體幾何的公理、定理來(lái)證明或計(jì)算立體幾何問(wèn)題越來(lái)越少,而借助于向量的計(jì)算方法來(lái)處理立體幾何的問(wèn)題卻越來(lái)越多。本講座就是詳細(xì)
2025-08-27 17:12
【摘要】立體幾何??甲C明題1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形(2)若BD=,AC=2,EG=2。求異面直線(xiàn)AC、BD所成的角和EG、BD所成的角。AHGFEDCB2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:15
【摘要】新課標(biāo)立體幾何??甲C明題匯總1、已知四邊形是空間四邊形,分別是邊的中點(diǎn)(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線(xiàn)AC、BD所成的角和EG、BD所成的角。證明:在中,∵分別是的中點(diǎn)∴同理,∴∴四邊形是平行四邊形。(2)90°30°
2025-03-25 06:44
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說(shuō)明共點(diǎn)、共線(xiàn)、共面問(wèn)題。(1)證明點(diǎn)共線(xiàn)的問(wèn)題,一般轉(zhuǎn)化為證明這些點(diǎn)是某兩個(gè)平面的公共點(diǎn)(依據(jù):由點(diǎn)在線(xiàn)上,線(xiàn)在面內(nèi),推出點(diǎn)在面內(nèi)),這樣可根據(jù)公理2證明這些點(diǎn)都在這兩個(gè)平面的公共直線(xiàn)上。(2)證明共點(diǎn)問(wèn)題,一般是先證
2025-06-07 21:19
【摘要】必修二立體幾何經(jīng)典證明試題1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點(diǎn)(I)證明:平面BDC1⊥平面BDC(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.CBADC1A11.【解析】(Ⅰ)由題設(shè)知BC⊥,BC⊥AC,,∴面,又∵面,∴,由題設(shè)知,∴=,即
2025-03-25 02:03
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線(xiàn)段表示.2.向量的模:向量的大小叫向量的長(zhǎng)度或模.記為|,特別地:?①規(guī)定長(zhǎng)度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個(gè)模相等且方向相同的向量稱(chēng)為相等的向量.4.負(fù)向量:兩個(gè)模相等且方向相反的向量是互為負(fù)向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】專(zhuān)題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個(gè)全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線(xiàn)
2025-07-18 00:17
【摘要】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個(gè)幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(山東
2025-06-07 22:04