【摘要】ABbac┏C復習回顧1、直角三角形兩銳角之間有何關系?2、直角三角形三邊之間有何關系?3、直角三角形的邊角之間有何關系?4、你能說出什么叫解直角三角形嗎?解直角三角形的依據活動一tanA=absinA=aca2+b2=c2(勾股定理);
2025-01-15 10:49
【摘要】第16講直角三角形第16講┃直角三角形考點1直角三角形┃考點自主梳理與熱身反饋┃1.在Rt△ABC中,∠ACB=90°,AB=10,CD是AB邊上的中線,則CD的長是()A.20B.10C.5
2025-11-28 16:05
【摘要】第1章直角三角形直角三角形的性質和判定(Ⅰ)第1課時直角三角形的性質和判定目標突破總結反思第1章直角三角形知識目標第1課時直角三角形的性質和判定知識目標1.根據三角形內角和定理,結合直角三角形的一個內角是直角的特征,理解直角三角形兩銳角互余的性
2025-06-17 22:00
【摘要】單元知識網絡直角三角形的邊角關系解直角三角形知一邊一銳角解直角三角形知兩邊解直角三角形添設輔助線解直角三角形知斜邊一銳角解直角三角形知一直角邊一銳角解直角三角形知兩直角邊解直角三角形知一斜邊一直角邊解直角三角形實際應用抽象出圖形,再添設輔
2025-08-04 13:18
【摘要】教學目標:、勾股定理等知識解決在直角三角形中,由已知的一些邊、角。求出另一些邊角的問題的過程。了解直角三角形的概念。、勾股定理等知識解直角三角形,以及解決與直角三角形有關的簡單實際問題。重點和難點:。2.解直角三角形的過程中,由已知條件求某條邊或某個角的方法,以及求這些邊、角的順序往往不唯一
2025-08-04 17:23
【摘要】——坡度、坡角ADBCi=1:2363:1i?αlhi=h:l1、坡角坡面與水平面的夾角叫做坡角,記作α。2、坡度(或坡比)坡度通常寫成1∶m的形式,如i=1∶6.如圖所示,坡面的鉛垂高度(h)和水平長度(l)的比叫做坡面的坡度(或坡比),
2025-11-12 02:59
【摘要】句容市寶華中學朱興萍?知識點聚焦?實際應用?小結?趣味題知識點聚焦直角三角形兩個銳角互余斜邊上的中線等于斜邊的一半300角所對的直角邊等于斜邊的一半解直角三角形勾股定理邊角關系:銳角三角函數應用銳角三角函數在直角三角形ABC中,銳角A的三角函
2025-07-23 11:08
【摘要】直角三角形考點整合一.直角三角形的概念:有一角是的三角形是直角三角形.直角考點整合二.直角三角形的性質:.:直角三角形的兩直角邊a、b的等于斜邊c的,即,斜邊上的中線等于斜邊的
2025-07-26 12:59
【摘要】解直角三角形(2)在直角三角形中,除直角外,由已知兩元素求其余未知元素的過程叫解直角三角形.(1)三邊之間的關系:a2+b2=c2(勾股定理);(2)兩銳角之間的關系:∠A+∠B=90o;(3)邊角之間的關系:ACBabc
2025-11-12 04:10
【摘要】二、直角三角形班級:___________________________姓名:___________________________作業(yè)導航一、填空題△ABC中,∠C=90°,若a=5,c=13,則b=_________.6和8,則斜邊上的高為_________.Rt△ABC中,∠C=
2025-11-23 13:40
【摘要】探索直角三角形全等的條件鄖西縣觀音鎮(zhèn)初級中學張先斌一、課前熱身1、三角形全等有哪幾種判定方法?SAS、ASA、AAS、SSS2、如圖,在Rt△ABC和Rt△DEF中,∠B=∠E=900(1)若∠C=∠F,BC=EF,則△ABC與△DEF,
2025-07-19 02:54
【摘要】探究活動任意畫一個直角三角形,作出斜邊上的中線,并利用圓規(guī)比較中線與斜邊的一半的長短,你發(fā)現了什么?再畫幾個直角三角形試一試,你的發(fā)現相同嗎?與同組同學進行交流。操作實踐,總結規(guī)律.?任意畫一個直角三角形,作出斜邊上的中線,并利用圓規(guī)比較中線與斜邊的一半的長短.你發(fā)現了什么??(請所有同學把結果都說出來.)?
2025-10-31 03:55
【摘要】解直角三角形(2)(2)兩銳角之間的關系∠A+∠B=90°(3)邊角之間的關系caAA???斜邊的對邊sincbBB???斜邊的對邊sincbAA???斜邊的鄰邊coscaBB???斜邊的鄰邊cosbaAAA????的鄰邊的對邊t
【摘要】1、了解測量中坡角、坡比的概念.2、掌握坡角、坡比的關系.3、能利用解直角三角形的知識解決與坡角有關的實際問題.結合思考題自學P(17)(19)課內練習前內容,并完成:課內練習1、21、坡角:坡面與面的夾角.2、坡比:坡面與
2025-11-15 20:54
【摘要】小組內交流課前預習檢測內容:要求:1、訂正答案,交流解題方法;2、梳理直角三角形的有關性質時間:5分鐘1、如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,現將它折疊,使點A與點B重合,折痕與AC,AB分別交于D,E兩點,求……(1)中的直角三角形為背景,設計一道有關
2025-08-05 10:28