【摘要】二次函數(shù)的應用(1)教材分析本節(jié)課要經(jīng)歷探索長方形和窗戶透光最大面積問題的過程,進一步獲得利用數(shù)學方法解決實際問題的經(jīng)驗,并進一步感受數(shù)學模型思想和數(shù)學的應用價值.在實際背景中解決最優(yōu)化問題,不是很容易的一件事.首先,實際問題的敘述往往比較長,使人感到問題很難,其次,分析其中各個量之間的關(guān)系也不是—件輕松的事情,要想解決好這類問題
2024-11-19 04:44
【摘要】本章中考演練1.(上海中考)下列對二次函數(shù)y=x2-x的圖象的描述,正確的是(C)y軸2.(瀘州中考)已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的
2025-06-12 00:36
【摘要】◆考點突破◆考前過三關(guān)(◎第一關(guān)◎第二關(guān)◎第三關(guān))◆考點突破◆考前過三關(guān)(◎第一關(guān)◎第二關(guān)◎第三關(guān))◆考點突破◆考前過三關(guān)(◎第一關(guān)◎第二關(guān)◎第三關(guān))◆考點突破◆考前過三關(guān)
2025-06-18 04:57
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-12 12:35
【摘要】第二章二次函數(shù)本專題包括二次函數(shù)的圖象及性質(zhì)的簡單應用、二次函數(shù)圖象上點的坐標特點、二次函數(shù)圖象的平移變換等內(nèi)容,屬于中考熱點問題,熟練掌握二次函數(shù)的圖象及性質(zhì)、對稱軸、頂點坐標、二次函數(shù)的最值等知識點是解題的關(guān)鍵.類型1二次函數(shù)的圖象及應用y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①a0;②該函數(shù)的圖象關(guān)
【摘要】yxO2021屆南京市鼓樓區(qū)蘇教版版九年級數(shù)學第五章《二次函數(shù)》期終復習一、知識點:1.二次函數(shù)2()yaxhk???的圖像和性質(zhì)a>0a<0圖象開口對稱軸頂點坐標
2024-11-28 17:07
【摘要】謝謝觀看Thankyouforwatching!
2025-06-13 20:04
【摘要】章末小結(jié)與提升二次函數(shù)描述的關(guān)系實際問題二次函數(shù)概念二次函數(shù)??=????2的平移上、下平移|??|個單位長度:??=????2+??左、右平移|?|個單位長度:??=??(??-?)2上、下平移|??|個單位長度,左、右平移|?
【摘要】3確定二次函數(shù)的表達式【基礎(chǔ)梳理】確定二次函數(shù)表達式的一般方法已知條件選用表達式的形式頂點和另一點的坐標_______二次函數(shù)各項系數(shù)中的一個和兩點的坐標_______三個點的坐標_______頂點式一般式一般式【自我診斷】1.(1)確定二次函數(shù)的表達式一般需要三個條件.(
2025-06-14 06:48
【摘要】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 03:00
【摘要】第二章二次函數(shù)二次函數(shù)的應用知識點最大利潤問題,在銷售過程中,發(fā)現(xiàn)一周利潤y(元)與每件銷售價x(元)之間的關(guān)系滿足y=-2(x-20)2+1558,由于某種原因,銷售價需滿足15≤x≤22,那么一周可獲得的最大利潤是(D),100件按批發(fā)價每件30元,每多批發(fā)10件
2025-06-18 00:31
2025-06-15 02:54
2025-06-12 13:43
【摘要】二次函數(shù)cbxaxy???2的圖象(第二課時)清城中學【教材分析】本節(jié)課內(nèi)容是北師版教材九年級下冊第二章第4節(jié)《二次函數(shù)cbxaxy???2的圖象》的第二課時。是在前面已經(jīng)學習、探究了函數(shù)2yax?和函數(shù)2yaxc??的圖象與性質(zhì)后,繼續(xù)探究具有普遍意義和形式的函數(shù)cbx
2024-11-19 00:52