【摘要】鹽城景山中學高二年級2021---2021學年度第一學期期中考試數(shù)學試題一、填空題:(本大題有14小題,每小題5分,共計70分)1、命題“xxRx31,2????”的否定是▲.2、“a=1”是“函數(shù)2()23fxxax???在區(qū)間[1,+∞)上為增函數(shù)”的
2025-11-26 09:20
【摘要】1北師大版高中數(shù)學2-1第一章《常用邏輯用語》命題及其關系(一)法門高中姚連省制作2思考:你能判斷下列語句的真假嗎?這些語句的表述形式有什么特點?⑴若0ab??,則2aba
2025-11-09 13:29
【摘要】全稱量詞與存在量詞(第二課時)含有一個量詞的命題的否定高中數(shù)學選修2-1第一章常用邏輯用語已知,若對,總,使得
2025-11-08 12:02
【摘要】曲邊梯形的面積教學目標1.通過實例直觀了解微積分基本定理的含義。2.理解以直代曲的思想重點難點微分與積分教學過程一.情境創(chuàng)設微積分在幾何上有兩個基本問題;“曲線梯形”的面積。二.新授直線x?0、x?1、y?0及曲線y?x2所
2025-11-26 09:29
【摘要】不等式的證明方法教學目標知識與技能:比較法,綜合法,分析法:反證法,換元法,放縮法[過程與方法情感態(tài)度與價值觀教學重難點初步學會不等式證明的三種常用方法:比較法,綜合法,分析法教學
2025-11-11 00:30
【摘要】重慶市萬州分水中學高中數(shù)學選修2-1《空間向量的數(shù)量積》教案備課時間教學課題教時計劃1教學課時1教學目標1.掌握空間向量的夾角的概念,掌握空間向量的數(shù)量積的概念、性質和運算律,了解空間向量數(shù)量積的幾何意義;2.掌握空間向量數(shù)量積的坐標形式,會用向量的方法解決有關垂直、夾角和
2025-11-26 03:08
【摘要】拋物線的幾何性質課題第1課時計劃上課日期:教學目標知識與技能掌握拋物線的幾何性質,能應用拋物線的幾何性質解決問題過程與方法情感態(tài)度與價值觀教學重難點拋物線的幾何性質.教學流程\內(nèi)容\板書關鍵點撥加工潤色一、復習回顧拋物線的標
【摘要】拋物線的標準方程教學目標]知識與技能1.掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;2.掌握求拋物線的標準方程的基本方法;[過程與方法情感態(tài)度與價值觀教學重難點能根據(jù)已知條件求拋物線的標準方程教學流程\內(nèi)容\板書關鍵點撥加工潤色一、復
【摘要】圓錐曲線與方程§MQF2PO1O2VF1古希臘數(shù)學家Dandelin在圓錐截面的兩側分別放置一球,使它們都與截面相切(切點分別為F1,F(xiàn)2),又分別與圓錐面的側面相切(兩球與側面的公共點分別構成圓O1和圓O2).過M點作圓錐面的一條母線分別交圓O1,圓O2與
2025-11-08 23:31
【摘要】求曲線方程(1)曲線上點的坐標都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解為坐標的點都在曲線C上.曲線C叫做方程F(x,y)=0的曲線,方程F(x,y)=0叫做曲線C的方程.求曲線方程的步驟,設動點M(x,y);p的點M的集合P={M|p(M)};p
2025-11-09 08:46
【摘要】求曲線的方程.一:直接法.例1、△ABC的頂點A固定,點A的對邊BC的長是2a,邊BC上高的長是b,邊BC沿一定直線移動,求△ABC外心的軌跡方程。1、設A,B兩點的坐標分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習40頁第2題求曲線的方程.
2025-11-08 15:21
【摘要】教師用書獨具演示1.3全稱量詞與存在量詞1.3.1量詞1.3.2含有一個量詞的命題的否定●三維目標1.知識與技能通過生活和數(shù)學的實例,理解全稱量詞與存在量詞的意義,能準確地利用全稱量詞與存在量詞敘述數(shù)學內(nèi)容.2.過程與方法通過生活和數(shù)學的豐富實例,讓學生體會從具體到一般的認知過程
2025-11-08 23:34
【摘要】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個方面:一是曲線上點的坐標都是方程的解———稱為純粹性;二是以方程的解為坐標的點都在曲線上———稱為完備性.兩者缺一不可,否則就容易導致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個點B.一個圓
2025-11-11 00:26
【摘要】F1F2F3aC'B'A'D'DABC空間向量及其線性運算教學目標1.運用類比方法,經(jīng)歷向量及其運算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運算及其性質;3.理解空間向量共線的充要條件重點難點教
【摘要】§3全稱量詞與存在量詞全稱量詞與全稱命題存在量詞與特稱命題課時目標,理解全稱量詞與存在量詞的意義.確地利用全稱量詞與存在量詞敘述數(shù)學內(nèi)容,并判斷全稱命題和特稱命題的真假.1.全稱量詞與全稱命題命題中“所有”“每一個”“任何”“任意一條”“一切”等詞語,都是在指定范圍內(nèi),表示__
2025-11-26 06:49