【摘要】北京師范大學(xué)出版社九年級(jí)|下冊(cè)第三章圓2圓的對(duì)稱性【創(chuàng)設(shè)情境】問題1(1)圓是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?你能找到多少條對(duì)稱軸?(2)你是用什么方法解決上述問題的?不同伴迚行交流.【啟發(fā)思考】問題2一個(gè)圓繞著它的圓心旋轉(zhuǎn)任意一個(gè)角度,還能不原來的圖形重合嗎?【
2025-06-14 12:04
2025-06-14 12:05
【摘要】第2課時(shí)§圓的對(duì)稱性知識(shí)目標(biāo):經(jīng)歷探索圓的對(duì)稱性及相關(guān)性質(zhì);理解圓的對(duì)稱性及相關(guān)性質(zhì)進(jìn)一步體會(huì)和理解研究幾何圖形的各種方法德育目標(biāo):培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和開拓進(jìn)取的精神能力目標(biāo):培養(yǎng)學(xué)生觀察、分析、探索能力和創(chuàng)造力教學(xué)重點(diǎn)和難點(diǎn)重點(diǎn):垂徑定理及其逆定理難點(diǎn):垂徑定理及其逆定理
2025-11-20 12:27
【摘要】圓的對(duì)稱性一、選擇題1、如圖3-33所示,弦CD垂直于⊙O的直徑AB,垂足為E,且CD=22,BD=3,則AB的長為()A.2B.3C.4D.52、如圖3-35
2025-11-19 19:22
【摘要】猜一猜請(qǐng)同學(xué)們觀察屏幕上兩個(gè)半徑相等的圓。請(qǐng)回答:它們能重合嗎?如果能重合,請(qǐng)將它們的圓心固定在一起。O,然后將其中一個(gè)圓旋轉(zhuǎn)任意一個(gè)角度,這時(shí)兩個(gè)圓還重合嗎?O歸納:圓具有旋轉(zhuǎn)不變性,即一個(gè)圓繞著它的圓心旋轉(zhuǎn)任意一個(gè)角度,都能與原來的圓重合。因此,圓是中心對(duì)稱圓形,對(duì)稱中心為圓心。圓
2025-11-21 08:37
【摘要】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點(diǎn),所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應(yīng)怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計(jì))?ODC
2025-11-03 18:26
【摘要】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對(duì)稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時(shí)也是為進(jìn)行圓的計(jì)算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實(shí)驗(yàn)--觀察--猜想——合作交流——證明”的途徑,進(jìn)一步培養(yǎng)學(xué)生的動(dòng)手能力,觀察能力,分析、聯(lián)想能力、與人合作
2025-11-26 15:48
【摘要】第2章圓圓的對(duì)稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形.·定長叫作半徑.這個(gè)定點(diǎn)叫作圓心.OA圓也可以看成是平面內(nèi)一個(gè)動(dòng)點(diǎn)繞一個(gè)定點(diǎn)旋轉(zhuǎn)一周所形成的圖形,定點(diǎn)叫作圓心.以點(diǎn)O為圓心的圓叫作圓O,記作⊙
2025-11-29 02:59
【摘要】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對(duì)稱圖形?我們?cè)谥本€形中學(xué)過哪些軸對(duì)稱圖形?如果一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對(duì)稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?圓是軸對(duì)稱圖形,經(jīng)過圓心的每一條直線都是它們的對(duì)稱軸.看一看
2025-11-14 10:46
【摘要】第三課時(shí)課題§3.2.2圓的對(duì)稱性(二)教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)(二)1.圓的旋轉(zhuǎn)不變性.2.圓心角、弧、弦之間相等關(guān)系定理.(二)能力訓(xùn)練要求1.通過觀察、比較、操作、推理、歸納等活動(dòng),發(fā)展空間觀念、推理能力以及概括問題的能力.
2025-11-26 11:52
【摘要】圓的對(duì)稱性導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):1、理解弧、優(yōu)弧、劣弧、圓心角等概念。掌握?qǐng)A心角、弧、弦之間的關(guān)系定理及應(yīng)用。掌握“垂直于弦的直徑平分這條弦所對(duì)的兩條弧”這一結(jié)論。2、通過教學(xué)內(nèi)容向?qū)W生滲透事物相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美,激發(fā)學(xué)生的求知欲。3、經(jīng)歷探索圓的對(duì)稱性及相關(guān)性質(zhì)的過程,培養(yǎng)學(xué)生實(shí)驗(yàn)觀察、發(fā)現(xiàn)新問題,探究和解決問題的
2025-11-14 12:22
【摘要】1/3第2課時(shí)圓的對(duì)稱性課時(shí)測(cè)評(píng)方案基礎(chǔ)練知識(shí)點(diǎn)一圓是軸對(duì)稱圖形1.選擇。(1)在下面的圖形中,()一定是軸對(duì)稱圖形。A.平行四邊形B.梯形C.圓(2)將下面物體的平面圖畫在紙上,()一定是軸對(duì)稱圖形。A.茶杯B.籃球
2025-08-10 14:49
【摘要】教學(xué)目標(biāo):1.知識(shí)與技能:圓的旋轉(zhuǎn)不變性,圓心角、弧、弦之間相等關(guān)系定理.2.過程與方法:通過觀察、比較、操作、推理、歸納等活動(dòng)發(fā)展空間觀念、推理能力以及概括問題的能力,利用圓的旋轉(zhuǎn)不變性,研究圓心角、弧、弦之間相等關(guān)系定理.3.情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生積極探索數(shù)學(xué)問題的態(tài)度及方法.教學(xué)重點(diǎn):圓心角、弧、弦之間關(guān)系定理教學(xué)
2025-11-22 04:14
【摘要】圓的對(duì)稱性復(fù)習(xí)提問:1、什么是軸對(duì)稱圖形?我們?cè)趯W(xué)過哪些軸對(duì)稱圖形?如果一個(gè)圖形沿一條直線對(duì)折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對(duì)稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對(duì)稱圖形呢?.圓的對(duì)稱性圓是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?你能
2025-10-09 06:59
【摘要】圓的對(duì)稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握?qǐng)A心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實(shí)驗(yàn)、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2025-11-14 13:04