【摘要】北京科技大學數(shù)理學院衛(wèi)宏儒計算方法第7章插值法插值法是函數(shù)逼近的重要方法之一,有著廣泛的應用。在生產(chǎn)和實驗中,函數(shù)f(x)或者其表達式不便于計算復雜或者無表達式而只有函數(shù)在給定點的函數(shù)值(或其導數(shù)值),此時我們希望建立一個簡單的而便于計算的函數(shù)?(x),或為各種離散數(shù)據(jù)建立連續(xù)模型
2025-07-26 20:27
【摘要】廣東省深圳市第三高級中學數(shù)學必修一《函數(shù)的最大(?。┲怠氛n件一、問題導入的,在減區(qū)間上時隨著自變量的增大而降低的,那么函數(shù)的圖象有最高點和最低點嗎?2.函數(shù)圖象上升與下降反映了函數(shù)的單調(diào)性,如果函數(shù)的圖象存在最高點或最低點,它又反映了函數(shù)的什么性質(zhì)?二、探索新知——最大值觀察下列兩個函數(shù)圖象:思考1:這兩
2025-11-04 12:03
【摘要】一、高考要求、值域、單調(diào)性和它們的圖象等,求三角函數(shù)的最大值和最小值.最小值.解決.最值問題是三角中考試頻率最高的重點內(nèi)容之一,需要綜合運用三角函數(shù)概念、圖象、性質(zhì)以及誘導公式、同角三函數(shù)基本關(guān)系式、三角變換等,也是函數(shù)內(nèi)容的交匯點,常見方法有
2025-11-02 12:57
【摘要】函數(shù)的基本性質(zhì)——最大(小)值??問題1:觀察函數(shù)f(x)=-x2.yxo函數(shù)最大值概念:一般地,設函數(shù)y=f(x)的定義域為I.如果存在實數(shù)M,滿足:講授新課函數(shù)最大值概念:一般地,設函數(shù)y=f(x)的定義域為I.如果存在實數(shù)M,滿足
2025-07-18 10:57
【摘要】個股期權(quán)的實值、平值和虛值湯震宇博士CFAFRMCTPCAIACMARFP金程教育首席培訓師2-13(一)程大叔買認購期權(quán)?還是先來回顧一下之前課程中的例子:?股民程大叔認為X股票會上漲,但是又面臨著迚退兩難的擔憂?多虧有股票認購期權(quán)合約,解決了程大叔的煩惱。?股票認購期權(quán)
2025-09-20 20:19
【摘要】?1.判斷正誤:?(1)若函數(shù)f(x)在區(qū)間(a,b)和(c,d)上均為增函數(shù),則函數(shù)f(x)在區(qū)間(a,b)∪(c,d)上也是增函數(shù).?(2)若函數(shù)f(x)和g(x)在各自的定義域上均為增函數(shù),則f(x)+g(x)在它們定義域的交集(非空)上是增函數(shù).?[答案](1)×(
2025-11-01 12:26
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??第3章插值法iiij
2025-05-13 09:59
【摘要】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導數(shù)的應用目錄后退主頁退出本節(jié)知識引入本節(jié)目的與要求本節(jié)重點
2025-08-01 17:50
【摘要】信息學院羅捍東1第四節(jié)函數(shù)的極值、最值及其應用函數(shù)的極值及其求法oxyab()yfx?1x2x4x5x6xoxyoxy0x0x信息學院羅捍東2定義:函數(shù)的極大值與極小值統(tǒng)稱為極值,使函數(shù)取得極值的點稱為極值點.0000000
2025-10-09 14:52
【摘要】第四章插值與基函數(shù)重新回憶虛功方程它是解釋有限元法的思想基礎(chǔ)。注意到未知位移是通過插值函數(shù)用結(jié)點位移表示實虛[N]是關(guān)鍵。故可以說采用插值函數(shù)位移模式是有限元法的一個重要特點。這樣提高插值精度是提高有限元法精度的重要手段。換言之,用什么單元的問
2025-08-15 23:28
【摘要】......函數(shù)最值的幾種求法新課程標準中,高中數(shù)學知識更加豐富,層次性更強,,必須從整體上把握課程標準,運用主線知識將高中數(shù)學知識穿成串,連成片,織成網(wǎng),才有利于學生更好的掌握,而函數(shù)的最值問題在整個高中教材中顯得非常重要,為了能系統(tǒng)
2025-05-16 01:56
【摘要】上次課內(nèi)容回顧1相間的概念兩相界面上不同于基體性質(zhì)的過度層。2相間電位兩相接觸時,在兩相界面層中存在的電位差。3電極電位的定義電極體系中,兩類導體界面所形成的相間電位,即電極材料和離子導體(溶液)的內(nèi)電位差。4三種電化學體系原電池電解池腐蝕電池5原電池電動勢的計算通式:
2025-05-01 18:12
【摘要】導數(shù)與函數(shù)的單調(diào)性、極值、最值適用學科高中數(shù)學適用年級高中三年級適用區(qū)域通用課時時長(分鐘)60知識點函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學目標掌握函數(shù)的單調(diào)性求法,會求函數(shù)的函數(shù)的極值,會求解最值問題,教學重點會利用導數(shù)求解函數(shù)的單調(diào)性,會求解函數(shù)的最值。教學難點熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應用
2025-07-26 05:39
【摘要】函數(shù)的基本性質(zhì)——最大(小)值復習引入??問題1函數(shù)f(x)=x2.在(-∞,0]上是減函數(shù),在[0,+∞)上是增函數(shù).當x≤0時,f(x)≥f(0),x≥0時,f(x)≥f(0).從而x∈R,都有f(x)≥f(0).因此x=0時,
2025-08-16 01:44
【摘要】三角函數(shù)的最值問題高三備課組1一:基礎(chǔ)知識1、配方法求最值主要是利用三角函數(shù)理論及三角函數(shù)的有界性,轉(zhuǎn)化為二次函數(shù)在閉區(qū)間上的最值問題,如求函數(shù)可轉(zhuǎn)化為求函數(shù)上的最值問題。2sinsin1yxx?????21,1,1yttt?????的最值2、化
2025-10-03 13:45