【摘要】......概率論與數(shù)理統(tǒng)計習題及答案習題一1..,B,C為三個事件,試用A,B,C的運算關系式表示下列事件:(1)A發(fā)生,B,C都不發(fā)生;(2)A與B發(fā)生,C不發(fā)生;(3)A,B,C
2025-06-24 21:00
【摘要】概率論與數(shù)理統(tǒng)計習題解答1第一章思考題1.事件的和或者差的運算的等式兩端能“移項”嗎?為什么?2.醫(yī)生在檢查完病人的時候搖搖頭“你的病很重,在十個得這種病的人中只有一個能救活.”當病人被這個消息嚇得夠嗆時,醫(yī)生繼續(xù)說“,我已經(jīng)看過
2025-06-23 17:20
【摘要】習題三,以X表示在三次中出現(xiàn)正面的次數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123100300、2只紅球、2只白球,在其中任取4只球,以X表示取到黑球的只數(shù),.【解】X和Y的聯(lián)合分布律如表:XY0123000102P(0黑,2紅
2025-06-24 20:55
【摘要】1章隨機變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果出現(xiàn)兩次,記錄投擲的次數(shù)。(2)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果接連出現(xiàn)兩次,記錄投擲的次數(shù)。(3)連續(xù)投擲一枚硬幣直至正面出現(xiàn),觀察正反面出現(xiàn)的情況。(4)拋一枚硬幣,若出現(xiàn)H則再拋一次;若出現(xiàn)T,則再拋一顆骰子,觀察出現(xiàn)的各種結(jié)果。解:(1
2025-01-15 09:24
【摘要】習題一:寫出下列隨機試驗的樣本空間:(1)某籃球運動員投籃時,連續(xù)5次都命中,觀察其投籃次數(shù);解:連續(xù)5次都命中,至少要投5次以上,故;(2)擲一顆勻稱的骰子兩次,觀察前后兩次出現(xiàn)的點數(shù)之和;解:;(3)觀察某醫(yī)院一天內(nèi)前來就診的人數(shù);解:醫(yī)院一天內(nèi)前來就診的人數(shù)理論上可以從0到無窮,所以;(4)從編號為1,2,3,4,5的
2025-06-18 13:28
【摘要】概率論與數(shù)理統(tǒng)計及其應用習題解答第1章隨機變量及其概率1,寫出下列試驗的樣本空間:(1)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果出現(xiàn)兩次,記錄投擲的次數(shù)。(2)連續(xù)投擲一顆骰子直至6個結(jié)果中有一個結(jié)果接連出現(xiàn)兩次,記錄投擲的次數(shù)。(3)連續(xù)投擲一枚硬幣直至正面出現(xiàn),觀察正反面出現(xiàn)的情況。(4)拋一枚硬幣,若出現(xiàn)H則再拋一次;若出現(xiàn)T,則再拋一顆骰子,觀
2025-06-24 15:13
【摘要】57習題答案第1章三、解答題1.設P(AB)=0,則下列說法哪些是正確的?(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)
2025-06-24 20:52
【摘要】第1章三、解答題1.設P(AB)=0,則下列說法哪些是正確的?(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)AB不一定是不可能事件;(5)P(A)=0或P(B)=0(6)P(A–B)=P(A)解:(4)(6)正確.2.設A,
2025-06-23 02:00
【摘要】習題答案第1章三、解答題1.設P(AB)=0,則下列說法哪些是正確的?(1)A和B不相容;(2)A和B相容;(3)AB是不可能事件;(4)AB不一定是不可能事件;(5)P(A)=0或P(B)=0(6)P(A–B)=P(A)解:(4)(6)正確.
2025-06-24 20:46
【摘要】04183概率論與數(shù)理統(tǒng)計(經(jīng)管類)一、單項選擇題1.若E(XY)=E(X),則必有(B)。 A.X與Y不相互獨立 B.D(X+Y)=D(X)+D(Y) C.X與Y相互獨立 D.D(XY)=D(X)D(Y2.一批產(chǎn)品共有18個正品和2個次品,任意抽
2025-06-23 01:54
【摘要】第一章事件與概率寫出下列隨機試驗的樣本空間及表示下列事件的樣本點集合。(1)10件產(chǎn)品中有1件是不合格品,從中任取2件得1件不合格品。(2)一個口袋中有2個白球、3個黑球、4個紅球,從中任取一球,(ⅰ)得白球,(ⅱ)得紅球。解(1)記9個合格品分別為,記不合格為次,則(2)記2個白球分別為,,3個黑球分別為,,,4個紅球分別為,,,。則{,,,,,
2025-06-07 19:48
2025-06-25 02:36
【摘要】第一章事件與概率在數(shù)學系的學生中任選一名學生,令事件A表示被選學生是男生,事件B表示被選學生是三年級學生,事件C表示該生是運動員。(1)敘述的意義。(2)在什么條件下成立?(3)什么時候關系式是正確的?(4)什么時候成立?解(1)事件表示該是三年級男生,但不是運動員。(2)等價于,表示全系運動員都有是三年級的男生。(3)當全系運動員都是三年級學生時。
2025-03-25 04:52
【摘要】概率論與數(shù)理統(tǒng)計課后習題(1-4單元)第一單元1.解:(1)A1∪A2=“前兩次至少有一次擊中目標”;(2)2A=“第二次未擊中目標”;(3)A1A2A3=“前三次均擊中目標”;(4)A1?A2?A3=“前三次射擊中至少有一次擊中目標”;(5)A3-A2=“第三次擊中但第二次未擊中”;(6)A32A=
2025-01-09 01:12
【摘要】二、例題選講一、古典概型的概念古典概型三、小結(jié)一、古典概型1.定義若一個隨機試驗(Ω,F,P)具有以下兩個特征:(1)樣本空間的元素(基本事件)只有為有限個,即Ω={ω1,ω2,…,ωn};
2024-08-24 23:08