【摘要】第一篇:全等三角形培優(yōu)專題訓練 做最適合你的數(shù)學培訓 八年級數(shù)學培優(yōu)專題訓練 (二)探索三角形全等的條件 1、一張長方形紙片沿對角線剪開,得到兩張三角形紙片,再將這兩張紙片擺成如下圖形式,使點...
2025-10-15 20:58
【摘要】第一篇:《三角形的中位線》說課稿 《三角形的中位線》說課稿 旭陽中學 張國林 尊敬的各評委、同仁大家好: 我是來自旭陽中學的張國林,今天我說課的內(nèi)容是《三角形的中位線》,下面我將從教材分析、...
2024-11-16 02:54
【摘要】證明三三角形的中位線定理平行四邊形的性質(zhì)與判定性質(zhì)判定邊角對角線推論平行四邊形的兩組對邊①分別平行②分別相等平行四邊形的①對角相等②鄰角互補平行四邊形的對角線互相平分夾在兩條平行線間的平行線段相等①兩組對邊分別平行的四邊形②兩組
2025-10-29 02:33
【摘要】三角求值與解三角形專項訓練1三角公式運用【通俗原理】1.三角函數(shù)的定義:設(shè),記,,則.2.基本公式:.3.誘導公式:4.兩角和差公式:,,.5.二倍角公式:,,.6.輔助角公式:①,其中由及點所在象限確定.②,其中由及點所在象限確定.【典型例題】
2025-03-24 05:42
【摘要】三角形的中位線?把任意一個三角形分成四個全等的三角形.?做法:連接每兩邊的中點.做一做?你認為這種做法對嗎?三角形的中位線?定義:連接三角形兩邊中點的線段叫做三角形的中位線.ABCDEF?如圖:在△ABC中,D,E,F分別是三邊中點,則DE,
2025-10-28 19:56
【摘要】......【一】知識梳理【1】比例①定義:四個量a,b,c,d中,其中兩個量的比等于另兩個量的比,那么這四個量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-03-25 06:30
【摘要】滬科版·八年級數(shù)學下冊第4課時三角形的中位線新課導入如圖,一個農(nóng)夫有一塊三角形的地,準備分成面積相等的四塊,用來種植四種不同的農(nóng)作物,請設(shè)計合理的解決方案.ABC推進新課例6已知,直線l1,l2,l3互相平行,直線AC和直線A1C1分別交直線l1
2025-03-12 15:39
【摘要】§3﹒6三角形的中位線課前小測?,AB∥DE,△≌△.?2.ΔABC,點D、E是AB與AC的中點,證明DE∥BC。DE與BC之間存在什么樣的數(shù)量關(guān)系呢?圖中線段DE是連接ΔABC兩邊的中點D、E所得的線段,稱此線段DE
2024-11-12 00:10
【摘要】本專題訓練僅針對重慶市2010年中考第24題(策劃:衛(wèi)茂樺)全等三角形專項訓練1、(2009年安順)如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連結(jié)BF。(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。2、(2009年湖州)如圖:已知在中,,為邊的中點,過
2025-08-17 10:54
【摘要】三角形全等的判定專題訓練題-8-1、如圖(1):AD⊥BC,垂足為D,BD=CD。求證:△ABD≌△ACD。5、如圖(5):AB⊥BD,ED⊥BD,AB=CD,BC=DE。求證:AC⊥CE。2、如圖(2):AC∥EF,AC=EF,AE=BD。求證:△ABC≌△EDF。3、如圖
2025-03-24 05:43
【摘要】精品資源第19課三角形與全等三角形知識點:三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點,邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-16 12:49
【摘要】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【摘要】三角函數(shù)解三角形專題 一.解答題(共33小題)1.設(shè)函數(shù)f(x)=cos2x+sin2(x+).(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;(Ⅱ)當x∈[﹣,)時,求f(x)的取值范圍.2.已知函數(shù)f(x)=4sinx?sin(x+)﹣1,(1)求f(x)的最小正周期;(2)求f(x)在區(qū)間[﹣,]上的最大值和最小值.3.已知函數(shù)f(x)=2sin(ax﹣
2025-08-04 23:16
【摘要】WUMENG【中考考點梳理】考點一全等三角形的概念與性質(zhì)1.概念:能夠重合的兩個三角形叫做全等三角形.溫馨提示:記兩個三角形全等時,,△ABC和△DBC全等,點A和點D,點B和點B,點C和點C是對應頂點,記作△ABC≌△DBC.2.全等三角形的性質(zhì)(1)全等三角形的對應邊相等,對應角相等;(2)全等三角形的對應線段(包括角平分線、中線、高線)相等、周長相
2025-04-16 12:09
【摘要】全等三角形總結(jié)A.考點精析、重點突破、學法點撥“全等四解”全等三角形是初中平面幾何的重要內(nèi)容,它為解決線段以及角的相等問題提供了重要工具,也為以后的學習奠定了必要的基礎(chǔ),因此要學好平面幾何,必須重視全等三角形的學習.那么怎樣才能學好它呢?本文談四點意見,供同學們學習時參考.組成全等三角形的基本圖形大致有以下幾種:①平移型,如圖中的兩種圖形屬于平移型,它們可看
2025-04-16 23:02