【摘要】向量數(shù)量積的物理背景與定義復(fù)習(xí)回顧x1+x2y1+y2x1-x2y1-y2λx1λy11、若向量a=(x1,y1),b=(x2,y2)則向量a+b=(,)
2024-11-09 23:29
【摘要】第一篇:平面向量的數(shù)量積教案 、模、夾角 教學(xué)目標(biāo): 1、知識目標(biāo):推導(dǎo)并掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會利用數(shù)量積求解向量的模、、能力目標(biāo):通過自主互助探究式學(xué)習(xí),培養(yǎng)學(xué)生的自學(xué)能力,啟發(fā)學(xué)...
2024-10-21 00:49
【摘要】精品資源第02講向量的數(shù)量積●知識梳理:(1)向量的夾角:如下圖,已知兩個(gè)非零向量a和b,作=a,=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角,記作〈a,b〉.(2)數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即a·b=|a||b|co
2025-06-29 17:25
【摘要】§平面向量的坐標(biāo)運(yùn)算(二)知識回顧平面向量的坐標(biāo)表示分別與x軸、y軸方向相同的兩單位向量i、j作為基底,任一向量a,有且只有一對實(shí)數(shù)x、y,使得Oxyijaa=xi+yj=(x,y)1.設(shè)則
2024-11-09 06:28
【摘要】數(shù)量積運(yùn)算一、兩個(gè)向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個(gè)向量的數(shù)量積注:①兩個(gè)向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【摘要】空間向量運(yùn)算的坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,),(,)abab
2025-06-16 04:35
【摘要】海鹽高級中學(xué)高新軍復(fù)習(xí)引入:?若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個(gè)單位向量,若a=xi+yj,則a=(x,y).我們需要研究的問題是:⑴向量的和、差、數(shù)乘、模的運(yùn)算
2024-08-14 06:24
【摘要】平面向量的數(shù)量積的性質(zhì)【問題導(dǎo)思】 已知兩個(gè)非零向量a,b,θ為a與b的夾角.·b=0,則a與b有什么關(guān)系?【提示】 a·b=0,a≠0,b≠0,∴cosθ=0,θ=90°,a⊥b.·a等于什么?【提示】 |a|·|a|cos0°=|a|2.(1)如果e是單位向量,則a·e=e·
2025-06-25 15:19
2024-11-12 01:35
【摘要】OxyijaA(x,y)a兩者相同3.兩個(gè)向量相等的充要條件,利用坐標(biāo)如何表示?坐標(biāo)(x,y)一一對應(yīng)向量a1.以原點(diǎn)O為起點(diǎn)作OA=a,點(diǎn)A的位置由誰確定?2.點(diǎn)A的坐標(biāo)與向量a的坐標(biāo)有什么關(guān)系?由a唯一確定a=bx1=x2且y1=y2
2024-08-14 06:17
【摘要】向量的坐標(biāo)表示與運(yùn)算復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有
2024-11-09 03:52
【摘要】平面向量數(shù)量積說課稿 平面向量數(shù)量積說課稿1一、說教材 平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平...
2024-12-04 22:04
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量應(yīng)用舉例解分析用數(shù)量積和模的定義以及運(yùn)算性質(zhì),逐題計(jì)算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-11 09:01
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實(shí)數(shù)λ1,
2024-11-11 21:10
【摘要】說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評價(jià)設(shè)計(jì)六個(gè)方面對本節(jié)課的思考進(jìn)行說明。一、背景分析1、學(xué)習(xí)任務(wù)分析平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念
2025-04-16 12:12