【摘要】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-11-30 11:22
【摘要】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2025-08-05 03:58
【摘要】2例題講評[例1]已知定點F1(-3,0),F(xiàn)2(3,0),坐標平面上滿足下列條件之一的動點P的軌跡:12(1)8PFPF???12(6)5PFPF???12(2)6PFPF??12(4)4PFPF??12(5
2025-08-05 01:15
【摘要】橢圓定義及標準方程(3)橢圓定義及標準方程(3)---復(fù)習(xí)舊知(1)寫出圓的標準方程、參數(shù)方程。(2)橢圓的標準方程是什么?(3)求曲線方程的基本方法有哪幾種?橢圓定義及標準方程(3)---新知探究例3如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向x軸作垂線PP1,求線段PP1中點M的軌跡。
2024-11-09 01:54
【摘要】雙曲線的標準方程及其幾何性質(zhì)一、雙曲線的標準方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時,曲線只表示焦點F2所對應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時,曲線只表
2025-07-14 18:45
【摘要】......雙曲線的標準方程及其幾何性質(zhì)一、雙曲線的標準方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F
2025-07-14 18:54
【摘要】雙曲線及其標準方程練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年5月2日一、選擇題1.平面內(nèi)到兩定點E、F的距離之差的絕對值等于|EF|的點的軌跡是( )A.雙曲線 B.一條直線C.一條線段 D.兩條射線2.已知方程-=1表示雙曲線,則k的取值范圍是( )A.-10C.k≥0 D.
2025-06-23 15:30
【摘要】一、轉(zhuǎn)移代入法這個方法又叫相關(guān)點法或坐標代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關(guān)系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
2024-11-09 00:53
【摘要】雙曲線及其標準方程(1)復(fù)習(xí)與問題1,橢圓的第一定義是什么?平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。F1F2MM思考到平面上兩定點F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點的軌跡是什么?
2025-01-14 07:30
【摘要】橢圓的標準方程舊人教版高二數(shù)學(xué)上冊第八章生活舉例:橢圓第一定義:平面內(nèi)到兩個定點F1,F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓.?其中兩個定點F1,F2叫做橢圓的焦點;?兩焦點間的距離叫做橢圓的焦距.知識鏈接:以直線F1F2為x軸,線段F1F2的垂直平分
2024-11-12 17:11
【摘要】雙曲線的性質(zhì)(三)橢圓與直線的位置關(guān)系及判斷方法判斷方法?0(1)聯(lián)立方程組(2)消去一個未知數(shù)(3)復(fù)習(xí):相離相切相交一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(0個交點,一個交點,一個交點或兩個交點)位置關(guān)系與交
2024-11-18 07:54
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析雙曲線要點·疑點·考點(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)(2)雙
2024-11-18 15:24
【摘要】教學(xué)設(shè)計方案課題名稱雙曲線及其標準方程姓名王菲菲工作單位河北黃驊中學(xué)年級學(xué)科高二數(shù)學(xué)教材版本人教A版一、教學(xué)內(nèi)容分析在高中數(shù)學(xué)中,雙曲線及其標準方程的課程,在分析初等函數(shù)之前,是了解笛卡爾坐標圖線的重點。他是為培養(yǎng)學(xué)生對于坐標圖線了解函數(shù)關(guān)系打下基礎(chǔ),其關(guān)鍵在于了解學(xué)生對于圖像認識的能力,培養(yǎng)學(xué)生用數(shù)軸圖形了解函數(shù)信息的能力?,F(xiàn)如今在數(shù)學(xué)
2025-08-05 04:13
【摘要】《拋物線及標準方程》教學(xué)目標?知識與技能目標?使學(xué)生掌握拋物線的定義、拋物線的標準方程及其推導(dǎo)過程.?要求學(xué)生進一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.?過程與方法目標?情感,態(tài)度與價值觀目標?(1)培養(yǎng)學(xué)生用對稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美。?(2)培養(yǎng)學(xué)生
【摘要】拋物線及其標準方程(1)MNNMxyoxyoFF'F'F當(dāng)0<e<1時,是橢圓,當(dāng)e>1時,是雙曲線。當(dāng)e=1時,它又是什么曲線?一、橢圓和雙曲線的第二定義:與一個定點的距離和一條定直線的距離的比是常數(shù)e的點的軌跡.二、拋物線
2025-08-16 02:12