【摘要】教學基本信息課題余弦定理是否屬于地方課程或校本課程否學科數(shù)學學段:高中年級高一相關(guān)領(lǐng)域平面向量教材書名:普通高中課程標準實驗教科書B版必修5,出版社:人民教育出版社出版日期:2014年6月指導思想與理論依據(jù)數(shù)學學習按知識分類有概念學習、規(guī)則學習和問題解決學習,相應的課堂教學有概念教學、規(guī)則教學和問題解決學習。數(shù)
2025-04-16 22:52
【摘要】正余弦定理的綜合應用1.【河北省唐山一中2018屆二練】在中,角的對邊分別為,且.?。?)求角的大??;(2)若的面積為,求的值.2.【北京市海淀區(qū)2018屆高三第一學期期末】如圖,在中,點在邊上,且,,,.(Ⅰ)求的值;(Ⅱ)求的值.【解決法寶】對解平面圖形中邊角問題,若在同一個三角形,直接利用正弦定理與余弦定理求解,若圖形中條件與結(jié)論不在一個三角
2025-06-26 06:12
【摘要】正弦定理和余弦定理的應用舉例考點梳理1.用正弦定理和余弦定理解三角形的常見題型測量距離問題、高度問題、角度問題、計算面積問題、航海問題、物理問題等.2.實際問題中的常用角(1)仰角和俯角與目標線在同一鉛垂平面內(nèi)的水平視線和目標視線的夾角,目標視線在水平視線上方的角叫仰角,目標視線在水平視線下方的角叫俯角(如圖①).(2)方向角:相對于某正方向的水平角,
2025-06-24 02:22
【摘要】人教版數(shù)學必修5§溫州市五十一中學俞美丹一、教學內(nèi)容解析余弦定理是繼正弦定理教學之后又一關(guān)于三角形的邊角關(guān)系準確量化的一個重要定理。在初中,學生已經(jīng)學習了相關(guān)邊角關(guān)系的定性的結(jié)果,就是“在任意三角形中大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,則這兩個三角形全等”。同時學生在初中階段能解決直角三角形中一些邊角之間的定量
2025-06-19 01:03
【摘要】數(shù)學:《正弦定理與余弦定理》教案(新人教版必修5)(原創(chuàng))余弦定理一、教材依據(jù):人民教育出版社(A版)數(shù)學必修5第一章第二節(jié)二、設計思想:1、教材分析:余弦定理是初中“勾股定理”內(nèi)容的直接延拓,是解三角形這一章知識的一個重要定理,揭示了任意三角形邊角之間的關(guān)系,是解三角形的重要工具,余弦定理與平面幾何知識、向量、三角形有著密切的聯(lián)系。因此,做好“余弦定理”的教學,不僅能復習
【摘要】正弦定理、余弦定理基礎(chǔ)練習 1.在△ABC中: ?。?)已知、、,求b; (2)已知、、,求. 2.在△ABC中(角度精確到1°): ?。?)已知、c=7、B=60°,求C; ?。?)已知、b=7、A=50°,求B. 3.在△ABC中(結(jié)果保留兩個有效數(shù)字): ?。?)已知a=5、b=7、C=120°,求
2025-06-25 03:15
【摘要】正弦定理和余弦定理:.(1)在我國古代就有嫦娥奔月的神話故事.明月高懸,我們仰望夜空,會有無限遐想,不禁會問,月亮離我們地球有多遠呢?科學家們是怎樣測出來的呢?(2)設A,B兩點在河的兩岸,只給你米尺和量角設備,不過河你可以測出它們之間的距離嗎?
2025-01-19 15:31
【摘要】第一篇:數(shù)學:正弦定理、余弦定理的應用教案(蘇教版必修5) 您身邊的志愿填報指導專家 第5課時:§正弦定理、余弦定理的應用(1) 【三維目標】: 一、知識與技能 ,并能應用正弦定理、余弦...
2025-09-27 05:35
【摘要】第一篇:余弦定理的證明方法 余弦定理的證明方法 在△ABC中,AB=c、BC=a、CA=b 則c^2=a^2+b^2-2ab*cosC a^2=b^2+c^2-2bc*cosA b^2=a^...
2024-11-05 12:07
【摘要】數(shù)學高考總復習人教A版·(理)第三模塊三角函數(shù)、三角恒等變換、解三角形數(shù)學高考總復習人教A版·(理)第三模塊三角函數(shù)、三角恒等變換、解三角形考綱要求掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.熱點提示、余弦定理進行邊角轉(zhuǎn)化,進而進行恒等變換解決
2025-08-05 19:30
【摘要】第一篇:《正弦定理和余弦定理》教學反思 《正弦定理、余弦定理》教學反思 我對教學所持的觀念是:數(shù)學學習的主要目的是:“在掌握知識的同時,領(lǐng)悟由其內(nèi)容反映出來的數(shù)學思想方法,要在思維能力、情感態(tài)度與...
2025-09-24 14:50
【摘要】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
2025-09-27 06:34
【摘要】余弦定理1、向量的數(shù)量積:2、勾股定理:AaBCbc證明:復習引入向量法幾何法坐標法例題定理小結(jié)AaBCbc余弦定理Acb當
2024-11-07 01:12
【摘要】《余弦定理》說課稿南海藝術(shù)高級中學胡輝一.教材分析1.地位及作用“余弦定理”是人教A版數(shù)學必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。2.課時安排
2025-04-16 22:53
【摘要】《正弦定理和余弦定理》典型例題透析類型一:正弦定理的應用:例1.已知在中,,,,解三角形.思路點撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內(nèi)角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結(jié)升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問題;2.數(shù)形結(jié)合將已知條件表示在示
2025-03-25 04:59