【摘要】北京科技大學(xué)數(shù)理學(xué)院衛(wèi)宏儒計算方法第7章插值法插值法是函數(shù)逼近的重要方法之一,有著廣泛的應(yīng)用。在生產(chǎn)和實驗中,函數(shù)f(x)或者其表達式不便于計算復(fù)雜或者無表達式而只有函數(shù)在給定點的函數(shù)值(或其導(dǎo)數(shù)值),此時我們希望建立一個簡單的而便于計算的函數(shù)?(x),或為各種離散數(shù)據(jù)建立連續(xù)模型
2025-07-26 20:27
【摘要】簡明數(shù)值計算方法漳州師范學(xué)院計算機科學(xué)與工程系第二講插值法與曲線擬合主要內(nèi)容?插值法?拉格朗日插值?差商與差分?牛頓插值公式?逐次線性插值法?三次樣條插值?曲線擬合?曲線擬合的最小二乘法插值法?在實際問題中,我們會遇到兩種情況?變量間存在函數(shù)關(guān)系
2025-04-29 07:50
【摘要】數(shù)值分析第二章插值法Hermite插值,,,,,,,)(1010nnyyybxxxaxf??處的函數(shù)值為在節(jié)點設(shè)??值函數(shù)上的具有一階導(dǎo)數(shù)的插的在區(qū)間為設(shè)],[)()(baxfxP處必須滿足在節(jié)點顯然nxxxxP,,,)(10?)(],[)()1(一階光滑度上具有一階導(dǎo)數(shù)在若要求baxPiiiyxfxP??)()
2025-08-05 15:40
【摘要】第13章虛位移原理及拉格朗日方程在靜力學(xué)中,通過幾何矢量法建立了質(zhì)點系的平衡方程,進而解決了物體間的平衡問題,虛位移原理主要是從力、位移和功的概念出發(fā),運用數(shù)學(xué)分析的方法解決某些靜力學(xué)問題。法國數(shù)學(xué)家拉格朗日將達朗貝爾原理和虛位移原理相結(jié)合,建立了解決動力學(xué)問題的動力學(xué)普遍方程。并且進一步導(dǎo)出了拉格朗日方程。主要內(nèi)容虛位移的基本概念1、約束和約束方程非自由
2025-08-05 10:16
【摘要】插值法Newton插值32插值法插值法插值法的一般理論Lagrange插值31分段低次插值34實際問題期望試驗數(shù)據(jù)觀測數(shù)據(jù)期望內(nèi)在規(guī)律期望函數(shù)關(guān)系一、數(shù)學(xué)的期望插值法概述實驗數(shù)據(jù)是否存在內(nèi)在規(guī)律?實驗數(shù)
2025-01-15 12:35
【摘要】插值方法在圖像處理中的應(yīng)用作者:專業(yè)姓名學(xué)號控制工程陳龍斌控制工程陳少峰控制工程殷文龍摘要本文介紹了插值方法在圖像處理中的應(yīng)用。介紹了典型的最近鄰插值、雙線性插值、雙三次插值、
2025-06-29 14:12
【摘要】數(shù)值計算方法課程設(shè)計報告課程設(shè)計名稱:數(shù)值計算方法課程設(shè)計題目:插值算法年級專業(yè):信計1302班組員姓名學(xué)號:高育坤1309064043王冬妮1309064044
2025-08-05 06:42
【摘要】1分段插值法§從上節(jié)可知,如果插值多項式的次數(shù)過高,可能產(chǎn)生Runge現(xiàn)象,因此,在構(gòu)造插值多項式時常采用分段插值的方法。一、分段線性Lagrange插值,ix設(shè)插值節(jié)點為niyi,,1,0,??函數(shù)值為],[,,11??kkkkxxxx形成一個插值區(qū)間任取兩個相鄰的節(jié)點構(gòu)造Lagrange線性插值
【摘要】第五章插值法在實際科學(xué)計算中常會出現(xiàn)這樣的情況,由于函數(shù)的解析表達式過于復(fù)雜不便計算,但是需要計算多個點處的函數(shù)值;或者函數(shù)的解析表達式未知,僅知道它在區(qū)間內(nèi)n+1個互異點處對應(yīng)的函數(shù)值,需要構(gòu)造一個簡單函數(shù)作為函數(shù)
2025-05-13 04:09
【摘要】朱立永北京航空航天大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院Email:Password:buaa2022答疑時間:星期一下午15:00-17:00答疑地點:雙周:西配樓519室,單周:主南307第十五講Hermite插值第五章插值與逼近不少實際問題不但要求在節(jié)點上函數(shù)值相等,而
2025-07-25 18:53
【摘要】M1-13—5第二類拉格朗日方程質(zhì)點i的虛位移將上式代入動力學(xué)普遍方程(3-15)式:因qk是獨立的,所以注意廣義力可得11()nNiiiikkikmqq?????????rFr1()01,2,niiiikimkNq???
2025-05-12 15:35
【摘要】§引言問題的提出–函數(shù)解析式未知,通過實驗觀測得到的一組數(shù)據(jù),即在某個區(qū)間[a,b]上給出一系列點的函數(shù)值yi=f(xi)–或者給出函數(shù)表y=f(x)y=p(x)xx0x1x2……xnyy0y1y2……yn第六章插值法插值法的基本原理設(shè)函數(shù)y=f(x)定義在區(qū)
2025-04-29 08:22
【摘要】我最喜歡的設(shè)計師——卡爾·拉格菲爾德(KarlLagerfeld)人物簡介KarlLargerfeld于1938年,出生于德國漢堡一富商家庭。14歲時全家移居巴黎。16歲初出茅廬獲得國際羊毛局設(shè)計競賽外衣組冠軍,并由此跨入時裝藝術(shù)生涯。1983年,KarlLargerfeld的時裝生涯跨上新的臺階,他接受了盛情邀請,擔(dān)任巴黎著名的Chanel公司首席設(shè)計師,并與
2025-06-20 06:21
【摘要】1MATLAB插值與擬合§1曲線擬合實例:溫度曲線問題氣象部門觀測到一天某些時刻的溫度變化數(shù)據(jù)為:t012345678910T1315171416192624262729試描繪出溫度變化曲線。曲線擬合就是計算出兩組數(shù)據(jù)之間的一種函數(shù)關(guān)系,由此可描繪其變化曲線及估計非采集
2025-08-12 07:08
【摘要】課程設(shè)計說明書題目:Hermite插值法的程序設(shè)計及應(yīng)用學(xué)生姓名:畢美喬學(xué)院:理學(xué)院班級:信計09-2指導(dǎo)教師:李曉瑜任文秀2020年1月5日學(xué)校代碼:
2025-05-20 15:15