【摘要】不等式不等式不等式不等式含有絕對值的不等式1.不等式的基本性質(zhì)有哪些?2.|a|=(a>0)(a=0)(a<0)1.|a|的幾何意義數(shù)a的絕對值|a|,在數(shù)軸上等于對應(yīng)實(shí)數(shù)a的點(diǎn)到原點(diǎn)的距離.|-3|=3x012
2024-11-18 15:31
【摘要】【課題】含絕對值的不等式【教學(xué)目標(biāo)】1、理解含絕對值不等式xa?或xa?的解法;2、了解axbc??或axbc??的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學(xué)習(xí),學(xué)會(huì)運(yùn)用變量替換的方法,從而提升計(jì)算技能?!窘虒W(xué)重點(diǎn)】(1)不等式xa?或xa?的解
2024-12-08 06:55
【摘要】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知
2024-11-12 01:34
【摘要】絕對值三角不等式:如:|-3|或|3|表示數(shù)-3,3所對應(yīng)的點(diǎn)A或點(diǎn)B到坐標(biāo)原點(diǎn)的距離.探究新知3?x即實(shí)數(shù)x對應(yīng)的點(diǎn)到坐標(biāo)原點(diǎn)的距離小于3.探究新知絕對值的幾何意義:同理,與原點(diǎn)距離大于3的點(diǎn)對應(yīng)的實(shí)數(shù)可表示為:3?x探究新知設(shè)a,b是
2025-11-01 08:31
【摘要】!利用零點(diǎn)分段法解含多絕對值不等式對于含有兩個(gè)或兩個(gè)以上絕對值不等式的求解問題,不少同學(xué)感到無從下手,下面介紹一種通法——零點(diǎn)分段討論法.一、步驟通常分三步:⑴找到使多個(gè)絕對值等于零的點(diǎn).⑵分區(qū)間討論,去掉絕對值而解不等式.一般地n個(gè)零點(diǎn)把數(shù)軸分為n+1段進(jìn)行討論.⑶將分段求得解集,再求它們的并集.二、例題選講例1求不等式|x+2|+|x-1|>3的解集.
2025-06-26 20:56
【摘要】含參數(shù)的一元二次不等式的解法含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個(gè)根的大小及二次系數(shù)的正負(fù)入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點(diǎn),此現(xiàn)象出現(xiàn)的根本原因是不清楚該如何對參數(shù)進(jìn)行討論,而參數(shù)的討論實(shí)際上就是參數(shù)的分類,而參數(shù)該如何進(jìn)行分類?下面我們通過幾個(gè)例子體會(huì)一下。一.二次項(xiàng)系數(shù)為常數(shù)例1、解關(guān)于x的不
2025-06-25 16:58
【摘要】含參不等式專題(淮陽中學(xué))編寫:孫宜俊當(dāng)在一個(gè)不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時(shí)的參數(shù)可以從以下兩個(gè)方面來影響不等式的求解,首先是對不等式的類型(即是那一種不等式)的影響,其次是字母對這個(gè)不等式的解的大小的影響。我們必須通過分類討論才可解決上述兩個(gè)問題,同時(shí)還要注意是參數(shù)的選取確定了不等式
2025-07-26 06:19
【摘要】絕對值不等式的解法2??????.,,,,,||;,,,,||,????????11111111即的點(diǎn)的集合數(shù)軸上到原點(diǎn)距離大于它的解集是由絕對值的幾何意義對于不等式即的點(diǎn)的集合小于點(diǎn)距離它的解集是數(shù)軸上到原幾何意義由絕對值的對于不等式我們知道xx.||;||,||,||,,
2024-11-17 17:34
【摘要】高中數(shù)學(xué)知識(shí)專項(xiàng)系列講座含參數(shù)不等式的解法一、含參數(shù)不等式存在解的問題如果不等式(或)的解集是D,的某個(gè)取值范圍是E,且DE,則稱不等式在E內(nèi)存在解(或稱有解,有意義).例1.(1)不等式的解集非空,求的取值范圍;(2)不等式的解集為空集,求的取值范圍.(分析:解集非空即指有解,有意義,解集為即指無解(恒不成立),否定之后為恒成立,本題實(shí)質(zhì)上是成立與恒成立問題)解
2025-06-25 17:15
【摘要】知識(shí)回顧:1、正數(shù)、負(fù)數(shù)、零的絕對值分別是什么??2的幾何意義是什么、x其幾何意義是:數(shù)軸上表示實(shí)數(shù)的點(diǎn)到原點(diǎn)的距離。3.等式|x|=2的幾何意義是什么?4.不等式|x|2的幾何意義是什么?數(shù)軸上表示與原點(diǎn)距離等于
2024-11-17 07:31
【摘要】復(fù)習(xí)回顧:我們知道,一個(gè)實(shí)數(shù)a的絕對值的意義:⑴(0)0(0)(0)aaaaaa??????????;(定義)⑵a的幾何意義:OA||axa0關(guān)于絕對值還有什么性質(zhì)呢?表示數(shù)軸上坐標(biāo)為a的點(diǎn)A到原點(diǎn)O的距離.①2aa?②a
2024-11-17 12:59
【摘要】精品資源以二次函數(shù)為載體的絕對值不等式例析函數(shù)是高中數(shù)學(xué)的重要內(nèi)容,它把中學(xué)數(shù)學(xué)各個(gè)分支緊緊地聯(lián)系在一起.以函數(shù)為載體,綜合不等式交叉匯合處為主干,構(gòu)筑成知識(shí)網(wǎng)絡(luò)型不等式證明問題,在高考試題出現(xiàn)的頻率相當(dāng)高,占據(jù)著令人矚目的地位.由于此類問題的解題目標(biāo)與已知條件之間的跨度大,使得題型新穎、內(nèi)容綜合、解法靈活、思維抽象,所以它既是高考的熱點(diǎn)題型,又是頗難解決的重點(diǎn)問題.下面就以二次函數(shù)為載
2025-06-23 23:12
【摘要】教案教師姓名課程名稱數(shù)學(xué)班級(jí)授課日期授課順序章節(jié)名稱§含絕對值的不等式教學(xué)目標(biāo)知識(shí)目標(biāo):1、理解絕對值的幾何意義2、掌握簡單的含絕對值不等式的解法3、掌握含絕對值不等式的等價(jià)形式技能目標(biāo)
2024-12-08 20:12
【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】2020/12/24授課人:陳曉琳2020/12/24一、知識(shí)聯(lián)系1、絕對值的定義|x|=x,x0-x,x0-x
2024-11-17 12:00