freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

各種圓定理總結(jié)[包括托勒密定理、塞瓦定理、西姆松定理、梅涅勞斯定理、圓冪定理和四點(diǎn)共圓]-預(yù)覽頁

2025-07-10 07:37 上一頁面

下一頁面
 

【正文】   △ABD內(nèi)任意一點(diǎn),AE、BE、DE分別交對(duì)邊于C、G、F,則(BD/BC)*(CE/AE)*(GA/DG)=1   因?yàn)?BC/CD)*(DG/GA)*(AF/FB)=1,(塞瓦定理)所以 (BD/CD)*(CE/AE)*(AF/FB)=K(K為未知參數(shù))且(BD/BC)*(CE/AE)*(GA/DG)=K(K為未知參數(shù))又由梅涅勞斯定理得:(BD/CD)*(CE/AE)*(AF/FB)=1   所以(BD/BC)*(CE/AE)*(GA/DG)=1      AD,BE,CF交于一點(diǎn)的充分必要條件是:   (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1   由正弦定理及三角形面積公式易證   ,對(duì)于圓周上順次6點(diǎn)A,B,C,D,E,F,直線AD,BE,CF交于一點(diǎn)的充分必要條件是:   (AB/BC)*(CD/DE)*(EF/FA)=1 由塞瓦定理的角元形式,正弦定理及圓弦長(zhǎng)與所對(duì)圓周角關(guān)系易證。 或:設(shè)X、Y、Z分別在△ABC的BC、CA、AB所在直線上,則X、Y、Z共線的充要條件是(AZ/ZB)*(BX/XC)*(CY/YA)=    證明一:  過點(diǎn)A作AG∥BC交DF的延長(zhǎng)線于G,   則AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。BB39。BE:EC=BB39。   所以(AF/FB)(BD/DC)(CE/EA)=1 證明四:  連接BF。(S△BEF:S△CEF)于是L、M、N三點(diǎn)共線的充要條件是λμν=1。我們換乘汽車沿公路去每一個(gè)景點(diǎn)游玩,最后回到出發(fā)點(diǎn),直升機(jī)就停在那里等待我們回去。   另外還有一個(gè)要求,就是同一直線上的三個(gè)景點(diǎn),必須連續(xù)游過之后,才能變更到其它直線上的景點(diǎn)。   從A點(diǎn)出發(fā)的旅游方案還有:   方案 ② ——可以簡(jiǎn)記為:A→B→F→D→E→C→A,由此可寫出以下公式:  ?。ˋB:BF)*(FD:DE)*(EC:CA)=1。   值得注意的是,有些公式中包含了四項(xiàng)因式,而不是“梅涅勞斯定理”中的三項(xiàng)。   不知道梅涅勞斯當(dāng)年是否也是這樣想的,只是列出了一兩個(gè)典型的公式給我們看看。表述為:過三角形外接圓上異于三角形頂點(diǎn)的任意一點(diǎn)作三邊的垂線,則三垂足共線。西姆松線和PH的交點(diǎn)為線段PH的中點(diǎn),且這點(diǎn)在九點(diǎn)圓上。 證明  證明一: △ABC外接圓上有點(diǎn)P,且PE⊥AC于E,PF⊥AB于F,PD⊥BC于D,分別連DE、DF.   易證P、B、F、D及P、D、C、E和A、B、P、C分別共圓,于是∠FDP=∠ACP ①,(∵都是∠ABP的補(bǔ)角) 且∠PDE=∠PCE  ?、?而∠ACP+∠PCE=180176。因PL垂直于BC,PM垂直于AC,PN垂直于AB,有B、P、L、N和M、P、L、C四點(diǎn)共圓,有   ∠PBN =∠PLN =∠PCM=∠PLM.   故L、M、N三點(diǎn)共線。   三角形ABC和三角形XYZ位似,那么它們的外接圓也位似。   切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。   統(tǒng)一歸納:過任意不在圓上的一點(diǎn)P引兩條直線LL2,L1與圓交于A、B(可重合,即切線),L2與圓交于C、D(可重合),則有PA則PAPD=(POr)PB等于圓冪的絕對(duì)值。PB=PCPD   證明:(令A(yù)在P、B之間,C在P、D之間)因?yàn)锳BCD為圓內(nèi)接四邊形,所以角CAB+角CDB=180度,又角CAB+角PAC=180度,所以角PAC=角CDB,又角APC公共,所以三角形APC與三角形DPB相似,所以PA/PD=PC/PB,所以PA*PB=PC*PD   切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)   幾何語言:∵PT切⊙O于點(diǎn)T,PBA是⊙O的割線   ∴PT^2=PAPB為定值(圓冪定理)。   圓①也可以寫成   x^2+y^22xOx2yOy+xO^2+yO^2a=0①′   其中a為圓的半徑的平方。   在上面證明的過程中,我們以P為原點(diǎn),這樣可以使問題簡(jiǎn)化。   說明:?jiǎn)栴}4的解決借用了問題3的方法,同時(shí)我們也看到了問題4與問題問題2的內(nèi)在聯(lián)系。   切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。   統(tǒng)一歸納:過任意不在圓上的一點(diǎn)P引兩條直線LL2,L1與圓交于A、B(可重合,即切線),L2與圓交于C、D(可重合),則有PA則PAPD=(POr)PB等于圓冪的絕對(duì)值。PB=PCPD   證明:(令A(yù)在P、B之間,C在P、D之間)因?yàn)锳BCD為圓內(nèi)接四邊形,所以角CAB+角CDB=180度,又角CAB+角PAC=180度,所以角PAC=角CDB,又角APC公共,所以三角形APC與三角形DPB相似,所以PA/PD=PC/PB,所以PA*PB=PC*PD   切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)   幾何語言:∵PT切⊙O于點(diǎn)T,PBA是⊙O的割線   ∴PT^2=PAPB為定值(圓冪定理)。   圓①也可以寫成   x^2+y^22xOx2yOy+xO^2+yO^2a=0①′   其中a為圓的半徑的平方。   在上面證明的過程中,我們以P為原點(diǎn),這樣可以使問題簡(jiǎn)化。 說明:?jiǎn)栴}4的解決借用了問題3的方法,同時(shí)我們也看到了問題4與問題問題2的內(nèi)在聯(lián)系。) 方法3  把被證共圓的四點(diǎn)連成四邊形,若能證明其對(duì)角互補(bǔ)或能證明其一個(gè)外角等于其鄰補(bǔ)角的內(nèi)對(duì)角時(shí),即可肯定這四點(diǎn)共圓. 方法4  把被證共圓的四點(diǎn)兩兩連成相交的兩條線段,若能證明它們各自被交點(diǎn)分成的兩線段之積相等,即可肯定這四點(diǎn)共圓;或把被證共圓的四點(diǎn)兩兩連結(jié)并延長(zhǎng)相交的兩線段,若能證明自交點(diǎn)至一線段兩個(gè)端點(diǎn)所成的兩線段之積等于自交點(diǎn)至另一線段兩端點(diǎn)所成的兩線段之積,即可肯定這四點(diǎn)也共圓.(根據(jù)托勒密定理的逆定理) 方法5  證被證共圓的點(diǎn)到某一定點(diǎn)的距離都相等,從而確定它們共圓.   上述五種基本方法中的每一種的根據(jù),就是產(chǎn)生四點(diǎn)共圓的一種原因,因此當(dāng)要求證四點(diǎn)共圓的問題時(shí),首先就要根據(jù)命題的條件,并結(jié)合圖形的特點(diǎn),在這五種基本方法中選擇一種證法,給予證明.   判定與性質(zhì):   圓內(nèi)接四邊形的對(duì)角和為π,并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。那么這四點(diǎn)共圓) 反證法證明  現(xiàn)就“若平面上四點(diǎn)連成四邊形的對(duì)角互補(bǔ)。1. 若不給自己設(shè)限,則人生中就沒有限制你發(fā)揮的藩籬。有時(shí)候覺得自己像個(gè)神經(jīng)病。歲月是有情的,假如你奉獻(xiàn)給她的是一些色彩,它奉獻(xiàn)給你的也是一
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1