【摘要】微分方程建模Ⅱ動(dòng)態(tài)模型正規(guī)戰(zhàn)與游擊戰(zhàn)?早在第一次世界大戰(zhàn)期間就提出了幾個(gè)預(yù)測戰(zhàn)爭結(jié)局的數(shù)學(xué)模型,其中有描述傳統(tǒng)的正規(guī)戰(zhàn)爭的,也有考慮游擊戰(zhàn)爭的,以及雙方分別使用正規(guī)部隊(duì)和游擊部隊(duì)的所謂混合戰(zhàn)爭的。后來人們對(duì)這些模型作了改進(jìn)用以分析歷史上一些著名的戰(zhàn)爭,如二戰(zhàn)中的硫磺島之戰(zhàn)和越南戰(zhàn)爭。預(yù)測戰(zhàn)爭勝負(fù)應(yīng)該考慮哪些因素?;
2025-08-16 00:58
【摘要】微分方程 什么是微分方程?它是怎樣產(chǎn)生的?這是首先要回答的問題. 300多年前,由牛頓(Newton,1642-1727)和萊布尼茲(Leibniz,1646-1716)所創(chuàng)立的微積分學(xué),是人類科學(xué)史上劃時(shí)代的重大發(fā)現(xiàn),而微積分的產(chǎn)生和發(fā)展,,,運(yùn)動(dòng)規(guī)律很難全靠實(shí)驗(yàn)觀測認(rèn)識(shí)清楚,,運(yùn)動(dòng)物體(變量)與它的瞬時(shí)變化率(導(dǎo)數(shù))之間,通常在運(yùn)動(dòng)過程中按照某種己知定律存在著聯(lián)系,我們?nèi)?/span>
2025-06-24 23:00
【摘要】§8.高階導(dǎo)數(shù)與高階微分YunnanUniversity1一、高階導(dǎo)數(shù)及其運(yùn)算法則,其速度物體運(yùn)動(dòng)規(guī)律)(tss?.lim)(0tstsvt???????一階導(dǎo)數(shù)).())(()(lim)(0tststvtvtat?????????????時(shí)間內(nèi)在t?于是,212gts?自由落
2025-05-14 22:24
【摘要】目錄上頁下頁返回結(jié)束第五章線性微分方程組前面幾章研究了只含一個(gè)未知函數(shù)的一階或高階方程,但在許多實(shí)際的問題和一些理論問題中,往往要涉及到若干個(gè)未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點(diǎn)仍在線性方程組的基本理論和常系數(shù)線性方程的解法上.
2025-01-20 04:56
【摘要】綜上所述,方程xmexPcyybya???????)(具有如下形式的特解:xmkexQxy???)(。其中)()(xPxQmm是與同次但系數(shù)待定的多項(xiàng)式,?按k不是特征方程的根、是單根或二重根依次取0,1或2。應(yīng)用歐拉公式,2cosix
2025-01-19 14:43
【摘要】§微分方程的基本概念一、微分方程的基本概念二、幾類簡單的微分方程可分離變量的微分方程齊次微分方程一階線性微分方程二階常系數(shù)線性微分方程微分方程、微分方程的解通解與特解、初始條件例1求過點(diǎn)(1,3)且切線斜率為2x的曲線方程。解:設(shè)所
2025-10-10 18:02
【摘要】YANGZHOUUNIVERSITY常系數(shù)線性微分方程組機(jī)動(dòng)目錄上頁下頁返回結(jié)束*第十二節(jié)解法舉例解方程組高階方程求解消元代入法算子法第十一章YANGZHOUUNIVERSITY常系數(shù)線性微分方程組解法步驟:第一步用
2025-07-18 23:47
【摘要】目錄待定系數(shù)法常數(shù)變異法冪級(jí)數(shù)法特征根法升階法降階法關(guān)鍵詞:微分方程,特解,通解,二階齊次線性微分方程常系數(shù)微分方程待定系數(shù)法解決常系數(shù)齊次線性微分方程特征方程(1)特征根是單根的情形設(shè)是特征方程的的個(gè)彼此不相等的根,則相應(yīng)的方程有如下個(gè)解:如果均為實(shí)數(shù),則是方程的個(gè)線性無關(guān)
2025-06-18 06:16
【摘要】機(jī)動(dòng)目錄上頁下頁返回結(jié)束?第十節(jié)歐拉方程歐拉方程)(1)1(11)(xfypyxpyxpyxnnnnnn?????????)(為常數(shù)kp,tex?令常系數(shù)線性微分方程xtln?即第十二章歐拉方程的算子解法:)(1)1(11)(xfypyxpyxpyxnn
2025-08-05 06:25
【摘要】第三節(jié)一階線性微分方程一、一階線性微分方程二、伯努利方程)()(xQyxPdxdy??一階線性微分方程的標(biāo)準(zhǔn)形式:,0)(?xQ當(dāng)上述方程稱為齊次的.上述方程稱為非齊次的.,0)(?xQ當(dāng)例如,2xydxdy??,sin2ttxdtdx??,32???xyyy,1c
2025-08-22 21:44
【摘要】目錄上頁下頁返回結(jié)束微分方程課程的一個(gè)主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達(dá)出來,但對(duì)一般的微分方程是無法求解的,如對(duì)一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對(duì)某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-08 09:04
【摘要】常系數(shù)齊次線性微分方程1二階常系數(shù)齊次線性方程定義二階常系數(shù)齊次線性方程解法小結(jié)思考題作業(yè)n階常系數(shù)齊次線性方程解法常系數(shù)齊次線性微分方程齊次常系數(shù)常系數(shù)齊次常系數(shù)齊次常系數(shù)齊次第5章微分方程常系數(shù)齊次線性微分方程20??????qyypy方程
2025-04-29 05:34
【摘要】有關(guān)一階線性微分方程積分因子的解法摘要:當(dāng)一階線性微分方程不是恰當(dāng)微分方程或不存在只含有一個(gè)未知數(shù)的積分因子時(shí),微分方程的積分因子不易求得.本文給出了三種特殊形式的積分因子并證明了這三種積分因子存在的充分必要條件.關(guān)鍵詞:偏導(dǎo)數(shù);偏微分方程;線性微分方程;積分因子一引言對(duì)于一階微分方程,
2025-06-24 03:52
【摘要】例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【摘要】Thursday,May26,20221第二章系統(tǒng)的數(shù)學(xué)模型Thursday,May26,20222本章的主要內(nèi)容控制系統(tǒng)微分方程建立傳遞函數(shù)控制系統(tǒng)的框圖和傳遞函數(shù)控制系統(tǒng)的信號(hào)流圖Thursday,May26,20223概述
2025-04-29 00:54