【正文】
頻是如何 被削去的。表中 F 的最大值 出現(xiàn)在 CLAIRE 視頻序列受到高斯濾波攻擊之后。實(shí)驗(yàn)中靈活選擇方差,使噪聲可見,但視頻無法觀看。 圖 7 攻擊將 CV 集中所有系數(shù)隨機(jī) +Q 或 Q 后,視覺質(zhì)量的比較 ( a)嵌入水印的 I幀圖像( b)受 攻擊后的 I幀圖像 最后, 研究 試圖清除水印的尋常蓄意攻擊。這兩種情 形中,一次都只能消除水印碼中的一半,同時使另一半水印碼強(qiáng)度加倍。盡管如此,在人臉的右側(cè)和上衣左側(cè)的顏色中仍存在偽影, 在左側(cè)的白藍(lán)條紋上有可見的偽影 。 七、討論 由于視頻 的水印容量更大 ,視頻信號的水印檢測問題不同于圖像信號 , 通過適當(dāng)選擇用于計(jì)算充分統(tǒng)計(jì)量的系數(shù)的個數(shù),可 實(shí)現(xiàn)檢測率和虛警概率的控制。此外, 本文 沒有 討論 視頻 最有力的攻擊之一 ——自合謀攻擊。對抗 更復(fù)雜 的 消除水印 攻擊等內(nèi)容,將作為日后討論的課題。 此外,在頻率上和 區(qū)域內(nèi)部擴(kuò)展水印以避免 誤差合并 。首先,若視頻較長并且應(yīng)用中檢測器響應(yīng)時間可以是任意的,則無論哪種視頻序列,檢測器的誤碼率都能夠維持。 參考文獻(xiàn) [1] I. 1449610 and I. R. , Advanced Video Coding 2020. [2] I. E. G. Richardson, and MPEG4 Video Compression. New York: Wiley, 2020. [3] G. Qiu, P. Marziliano, A. T. Ho, D. He, and Q. Sun, ―A hybrid watermarking scheme for ,‖ in Proc. 17th Int. Conf. Pattern Recognition, Aug. 2020, vol. 4, no. 4, pp. 865–868. [4] M. Noorkami and R. M. Mersereau, ―Compresseddomain video watermarking for ,‖ in Proc. IEEE Int. Conf. Image Processing, Genoa, Italy, Sep. 2020, vol. 2, pp. 890–893. [5] . Wu and . Wang, ―Robust watermark embedding/detection algorithm for ,‖ J. Electron. Imag., vol. 14, no. 1, pp. 13 013—130139, Jan. 2020. [6] H. A. Peterson, A. J. Ahumada, and A. Watson, ―An improved detection model for DCT coefficient quantization,‖ in Proc. SPIE—Int. Soc. Optical Engineering, San Jose, CA, Feb. 1993, vol. 1913, pp. 191–201. [7] A. B. Watson, ―DCT quantization matrices visually optimized for individual images,‖ in Proc. SPIE Int. Conf. Human Vision, Visual Processing and Digital Display, San Jose, CA, Feb. 1993, vol. 1913, pp. 202–216. [8] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, ―Perceptual watermarks for digital images and video,‖ in Proc. SPIE—Int. Soc. Optical Engineering, San Jose, CA, Jan. 1999, vol. 3567, pp. 40–51. [9] D. Simitopoulos, S. Tsaftaris, N. Boulgouris, and M. G. Strintzis, ―Compresseddomain video watermarking of MPEG streams,‖ in Proc. IEEE Int. Conf. Multimedia and Expo, Lausanne, Switzerland, Aug. 2020, vol. 1, pp. 569–572. [10] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, ―Lowplexity transform and quantization in ,‖ IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 598–603, Jul. 2020. [11] H. A. Peterson, H. Peng, J. Morgan, and W. Pennebaker, ―Quantization of color image ponents in the DCT domain,‖ in Proc. SPIE, 1991, vol. 1453, pp. 210–222. [12] F. Hartung and B. Girod, ―Watermarking of unpressed and pressed video,‖ Signal Process., vol. 66, no. 3, pp. 283–301, May 1998. [13] H. L. Van Trees, Detection, Estimation, and Modulation Theory Part I. New York: Wiley, 1968. [14] R. H. Jonsson, ―Adaptive subband coding of video using probability distribution models,‖ . dissertation, Georgia Inst. Technol., Atlanta, GA, 1994. [15] K. A. Birney and T. R. Fischer, ―On the modeling of DCT and subband image data for pression,‖ IEEE Trans. Image Process., vol. 4, no. 2, pp. 186–193, Feb. 1995. [16] W. Zeng, ―A statistical watermark detection technique without using original images for resolving rightful ownerships of digital images,‖ IEEE Trans. Image Process., vol. 8, no. 11, pp. 1534–1548, Nov. 1999. [17] Refrence Software Group. [Online]. Available: [18] A. M. Alattar, E. T. Lin, and M. U. Celik, ―Digital watermarking of low bit rate advanced simple profile MPEG4 pressed video,‖ IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 787–800, Aug. 2020. [19] M. Noorkami and R. M. Mersereau, ―Towards robust presseddomain video watermarking for ,‖ in Proc. SPIE—Security, Steganography, and Watermarking of Multimedia Contents VIII, San Jose, CA, Jan. 2020, vol. 6072.