【正文】
ure 4, when the workpiece is grasped by the manipulator, the hybrid pressure/position control method is used, and the pressure and position mand values are set with original ones of P0 and X0. The workpiece is lifted up with a constant force created by hybrid control loop with mand pressure P0. When the position mand value X0 is exceeded, the negative position error feeds back to the pressure control loop, the actual pressure in system begins to decrease and will stop decreasing at the weight balance pressure. In equilibrium, the workpiece stops moving, and the actual lifting force equals the total weight of the workpiece, gripper, and its support. Record this actual balance pressure and use it as the pressure value settings in pliance control in forging process. Figure 4: Illustration of the measurement of workpiece. . Automatic Identification of the Placement Height of Workpiece As shown in Figure 5, supposing the workpiece is staying at a position with equilibrium of forces, decrease the mand position X0 in a constant rate, then the balance has been broken. For the feedback of error of position increasing, the actual pressure will bee smaller and try to go to another equilibrium state. The actual lifting force is less than the weight of the workpiece, gripper, and its support now. So the workpiece moves down until touching the lower die. At this moment, the actual pressure drops rapidly. According to the change rate of pressure, the workpiece placement state can be identified automatically. Keep the mand position X0 with the height value of workpiece position placed on the lower die. The pressure and position of lifting cylinders goes to a new balance. Figure5: Illustration of the placement of workpiece. . Compliance in Vertical Direction and Move Up Automatically As shown in Figure 6, when the workpiece is pressed by the upper die, the load on cylinder will increase for the deformation of workpiece。 dynamic load analysis, dynamic stability, and behavior 。工作的目的是通過液壓和控制領(lǐng)域相結(jié)合的方法來通過機械手開發(fā)一種重型鍛壓機械以實現(xiàn)機器人功能。鍛造操作的智能控制與可編程邏輯控制器適用于工業(yè)應(yīng)用 。 操縱控制涉及在旋轉(zhuǎn)控制中的不斷旋轉(zhuǎn)和增量角度旋轉(zhuǎn)模式。 ASEA 機器人被用來作為一個開放式模鍛操作?;谏窠?jīng)網(wǎng)絡(luò)的合規(guī)控制模塊的有效性是通過一個完整的動態(tài)系統(tǒng)仿真評估。操縱器支持直線運動,比如因為特殊的杠桿安排的剝離而精確和穩(wěn)定的定位 。動態(tài)負載分析、動態(tài)穩(wěn)定性和動作 。提高質(zhì)量,減少重負載的影響,保護操作者并能節(jié)能是很重要的。鍛造操作機的液壓執(zhí)行器的混合壓力 /位置控制已經(jīng)實現(xiàn)。 CAD 模型如圖 1 中所示。在鍛造操作 inpress 期間,符合工件的變形。當(dāng)超出預(yù)期高度,位置誤差反饋恒力給起重缸伺服系統(tǒng)。然后降低高度設(shè)定值,起升油缸力和位置的平衡被打破了。當(dāng)工件接觸到下模,升降氣缸會發(fā)生很大變化,工件開始得到下模具中的壓力。作為一個結(jié)果,手爪與工件向下移動,將最小反應(yīng)力對工件變形。接下來壓力準(zhǔn)備。在平衡狀態(tài),預(yù)計實際升力等于工件、夾具的重量和它的支持,小于力設(shè)定值。 圖 2:混合動力控制系統(tǒng)的構(gòu)建 新設(shè)計的鍛造操作機的機身部分,運動的側(cè)移、傾斜、阻尼和提升是獨立的,且運動的任何一個對其他部分沒有影響。合規(guī)時發(fā)生的變形阻力大于設(shè)定值的卸壓閥阻尼回路。 圖 3:混合壓力 /位置控制系統(tǒng)框圖 當(dāng)柱塞缸采用時,混合壓力 /位置控制是非常有用的機械臂升降控制。在均衡狀態(tài)下,工件停止移動,實際提升力等于工件的總重量、夾持器和支持力。實際提升力小于工件的重量、夾持器和支持力。保持命令工件位置 X0 并放置在下模高度值。在此期間,力作用在工件上的機械臂從重量平衡壓力命令壓力 P0 增加,而它仍然是遠遠小于壓力。 圖 6:符合鍛造工序插圖 6.實驗結(jié)果 實驗是我們研究所的一個新型液壓鍛造操作機的原型,如圖 7 所示??删幊踢壿嬁刂破鲌?zhí)行所有的控制操作??梢詮那€上確定的,這是 兆帕的重量平衡的壓力。起升油缸留在這個位置。實驗數(shù)據(jù)為重型鍛造機械手智能控制研究形成了基礎(chǔ)。此外,鍛壓機械手可以在鍛造工序中施加于工件合適的力。 參考文獻 1. E. Appleton, W. B. Heginbotham, and D. Law, “ Open die forging with industrial robots.,” Industrial Robot, vol. 6, no. 4, pp. 191– 194, 1979. View at Scopus 2. “ Attaining practicality of freely programmable control of an open die forging press and forging manipulator by a puter,” IshikawajimaHarima Engineering Review, vol. 17, no. 6, pp. 599– 606, 1997. 3. R. A. Ridgeway, “ Microprocessor utilization in hydraulic opendie forge press control,” IEEE Transactions on Industrial Electronics and Control Instrumentation, vol. 22, no. 3, pp. 307– 309, 1975. View at Scopus 4. V. Vitscheff, “ A programmable manipulator for closed die forging, ” in Proceedings of the 9th International Drop Forging Convention, Kyoto, Japan, 1977. 5. W. B. Heginbotham, A. K. Sengupta, and E. Appleton, “ An ASEA robot as an opendie forging manipulator,” in Proceedings of the Second IFAC/IFIP Symposium, pp. 183– 193, Stuttgart, Germany, 1979. 6. A. K. Sengupta, E. Appleton, and W. B. Heginbotham, “ Ring forging with an industrial robot,” inProceedings of the 10th International Symposium on Industrial Robots, pp. 29– 42, Milan, Italy, 1980. 7. K. W. Lilly and A. S. Melligeri, “ Dynamic simulation and neural work pliance control of an intelligent forging center,” Journal of Intelligent and Robotic Systems, vol. 17, no. 1, pp. 81– 99, 1996. View at Scopus 8. A. S. Melligeri and K. W. Lilly, “ Application of neural works in pliance control of an integrated robot/forge processing center,” in Advances in Manufacturing Systems: Design, Modeling and Analysis, pp. 445– 450, Elsevier, New York, NY, USA, 1993. 9. M. Baldassi, “ Open die forging presses with manipulators,” Forging, vol. 14, no. 5, pp. 16– 18, 2020.