【摘要】PF2F1彗星太陽橢圓及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】1.理解橢圓的定義奎屯王新敞新疆明確焦點、焦距的概念奎屯王新敞新疆2.熟練掌握橢圓的標(biāo)準(zhǔn)方程,會根據(jù)所給的條件畫出橢圓的草圖并確定橢圓的標(biāo)準(zhǔn)方程奎屯王新敞新疆【自主學(xué)習(xí)】1997年初,中國科學(xué)院紫金山天文臺發(fā)布了一條消息,從1997年2月中旬起,海爾
2024-12-05 01:52
【摘要】ABCA1B1C1Myz3.2立體幾何中的向量方法——平行與垂直(1)【學(xué)習(xí)目標(biāo)】1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量;3.能用向量方法證明空間線線、線面、面面的平行與垂直關(guān)系.【自主學(xué)習(xí)】1、點的位置向量:2、直線的方向向量:3、平面的
2024-11-19 23:25
【摘要】(二)【學(xué)習(xí)目標(biāo)】1.能正確運用橢圓的定義與標(biāo)準(zhǔn)方程解題;2.學(xué)會用待定系數(shù)法與定義法求曲線的方程奎屯王新敞新疆3.使學(xué)生掌握在求橢圓標(biāo)準(zhǔn)方程的過程中首先確定其焦點在哪個坐標(biāo)軸上的方法.【自主學(xué)習(xí)與檢測】1.設(shè)21,FF為定點,|21FF|=6,動點M滿足6||||21??MFMF,則動點M的軌跡是(
【摘要】圓的簡單幾何性質(zhì)(三)【學(xué)習(xí)目標(biāo)】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問題.【典型例題】例1.點(,)Mxy與定點(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點M的軌跡,并說明軌跡是什么圖形.思考:
2024-11-19 19:35
【摘要】(一)【學(xué)習(xí)目標(biāo)】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質(zhì)奎屯王新敞新疆2.掌握標(biāo)準(zhǔn)方程中cba,,的幾何意義,以及ecba,,,的相互關(guān)系奎屯王新敞新疆3.理解、掌握坐標(biāo)法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法奎屯王新敞新疆【自主學(xué)習(xí)】yx,2.的點?橢圓的長軸與短軸是怎樣
2024-12-05 06:41
【摘要】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學(xué)習(xí)目標(biāo)】能用向量方法解決二面角的計算問題.【自主學(xué)習(xí)】1.二面角的大小是用它的平面角來度量的,求二面角關(guān)鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2024-11-19 23:24
【摘要】F1F2F3aC'B'A'D'DABC空間向量及其線性運算教學(xué)目標(biāo)1.運用類比方法,經(jīng)歷向量及其運算由平面向空間推廣的過程;2.了解空間向量的概念,掌握空間向量的線性運算及其性質(zhì);3.理解空間向量共線的充要條件重點難點教
2024-11-20 00:30
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章空間向量與立體幾何法門高中姚連省制作2平面向量的加法、減法與數(shù)乘運算向量加法的三角形法則ab向量加法的平行四邊形法則ba向量減法的三角形法則aba(k0)ka(k0)k向量的數(shù)乘a3推廣:
2024-11-18 00:48
【摘要】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2024-11-18 12:14
【摘要】空間向量運算的坐標(biāo)表示【學(xué)習(xí)目標(biāo)】1.掌握空間向量的長度公式、夾角公式、兩點間距離公式、中點坐標(biāo)公式;2.會用這些公式解決有關(guān)問題.【重點難點】空間向量的長度公式、夾角公式、兩點間距離公式、中點坐標(biāo)公式【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材P95~P97,找出疑惑之處)復(fù)習(xí)1:設(shè)在平面直角坐標(biāo)系中,A(
2024-11-19 20:38
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)目標(biāo)】進一步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點21,FF的距離的和為常數(shù)(大于21FF
2024-11-23 01:00
【摘要】立體幾何中的向量方法(1)____之證明【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點】掌握直線
2024-11-18 16:52
【摘要】拋物線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對稱性、頂點、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點4.離心率拋物線上的點M與焦點的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-05 06:40
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】初步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁的做法去做)分析:(1)軌跡上的點是怎么來的?(2)在這個運動過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點21,FF的距離的為常數(shù)
【摘要】B'C'CBA251213A'xOy雙曲線的簡單幾何性質(zhì)(一)【學(xué)習(xí)目標(biāo)】掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質(zhì).【自主學(xué)習(xí)】雙曲線的簡單幾何性質(zhì):1.范圍、對稱性2.頂點頂點:??0,),0,(21aAaA?特殊點: