【摘要】第三章不等式一、選擇題1.已知x≥,則f(x)=有().A.最大值 B.最小值 C.最大值1 D.最小值12.若x>0,y>0,則+的最小值是().A.3 B. C.4 D.3.設(shè)a>0,b>0則下列不等式中不成立的是().A.a(chǎn)+b+≥2 B.(a+b)(+)≥4C.≥a+b D
2025-06-18 13:52
【摘要】第一頁,編輯于星期六:點(diǎn)三十六分。,第一課時(shí)基本不等式,第二頁,編輯于星期六:點(diǎn)三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十六分。,第四頁,編輯于星期六:點(diǎn)三十六分。,第...
2024-10-22 19:00
【摘要】第三章不等式課題:§不等式與不等關(guān)系第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1.知識(shí)與技能:通過具體情景,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)的實(shí)際背景,掌握不等式的基本性質(zhì);2.過程與方法:通過解決具體問題,學(xué)會(huì)依據(jù)具體問題的實(shí)際背景分析問題、解決問題的方法;3.情態(tài)與
2024-11-19 20:24
2024-10-22 19:01
【摘要】第一篇:不等式證明,均值不等式 1、設(shè)a,b?R,求證:ab3(ab)+aba+b23abba2、已知a,b,c是不全相等的正數(shù),求證:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc...
2024-11-03 17:10
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實(shí)數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實(shí)數(shù),則.變式:或或.定理:設(shè),則(當(dāng)且僅當(dāng)時(shí)取等號(hào),假設(shè))變式:.定理:設(shè)是兩個(gè)向量,則.等號(hào)成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實(shí)數(shù),求證.
2025-04-04 05:05
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項(xiàng)的系數(shù)的符號(hào)分類,即;例1解不等式:分析:本題二次項(xiàng)系數(shù)含有參數(shù),,故只需對二次項(xiàng)系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時(shí),解集為當(dāng)時(shí),不等式為,解集為當(dāng)時(shí),解集為例2
2025-04-04 05:10
【摘要】第2課時(shí)基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會(huì)解決有關(guān)的實(shí)際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【摘要】復(fù)習(xí)課不等式課時(shí)目標(biāo),并能解有關(guān)的實(shí)際應(yīng)用問題.單的線性規(guī)劃問題的解法..不等式—錯(cuò)誤!一、選擇題1.設(shè)ab0,則下列不等式中一定成立的是()A.a(chǎn)-b0B.0ab1C.ab<
2024-12-04 23:45
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項(xiàng)法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】12不等式的定義:用不等號(hào)連接兩個(gè)解析式所得的式子,叫做不等式.說明:(1)不等號(hào)的種類:>、<、≥(≮)、≤(≯)、≠.(2)解析式是指:代數(shù)式和超越式(包括指數(shù)式、對數(shù)式和三角式等)(3)不等式研究的范圍是實(shí)數(shù)集R.3對于任意兩個(gè)實(shí)數(shù)a、b,在a>b,a=b,a
2024-11-17 19:45
【摘要】人教版高中數(shù)學(xué)必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列說法正確的是( )A.a(chǎn)b?ac2bc2 B.a(chǎn)b?a2b2C.a(chǎn)>
2025-06-18 13:49
【摘要】均值不等式的應(yīng)用(求最值)回顧一下重要不等式:均值不等式:222abab??(,0)2ababab???幾個(gè)重要的變形:2(0,0)ababab????2(,0)2ababab?????????222()(,)22a
2024-11-18 08:48
【摘要】3.4不等式的實(shí)際應(yīng)用學(xué)習(xí)目標(biāo)理.2.重點(diǎn)是不等式的實(shí)際應(yīng)用.3.難點(diǎn)是建立不等式問題模型,解決實(shí)際問題.課堂互動(dòng)講練知能優(yōu)化訓(xùn)練不等式的實(shí)際應(yīng)用課前自主學(xué)案3.4課前自主學(xué)案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【摘要】第一課時(shí)二維形式的柯西不等式(一)教學(xué)要求:認(rèn)識(shí)二維柯西不等式的幾種形式,理解它們的幾何意義,并會(huì)證明二維柯西不等式及向量形式.教學(xué)重點(diǎn):會(huì)證明二維柯西不等式及三角不等式.教學(xué)難點(diǎn):理解幾何意義.教學(xué)過程:一、復(fù)習(xí)準(zhǔn)備:1.提問:二元均值不等式有哪幾種形式?答案:(0,0)2abab
2024-11-19 20:23