【摘要】橢圓的標準方程生活中有橢圓,生活中用橢圓求曲線方程的基本步驟?設(shè)點建系找等量關(guān)系坐標化化簡、檢驗推導(dǎo)橢圓的標準方程F1F2xy0[1]建系:以過焦點F1,F(xiàn)2的直線為x軸,線段的垂直平分線為y軸,建立直角坐標系,則
2024-11-10 01:36
【摘要】一、求軌跡的常用方法:1、直接法(五步法、定義法)2、間接法(代入法、參數(shù)法)二、求軌跡方程的注意事項:一、求軌跡的常用方法:五步法的關(guān)鍵:找出限制(約束)動點運動所滿足的條件。定義法:分析條件,判斷軌跡是什么曲線,從而利用曲線的定義或利用其一般形式采用待定系數(shù)法求動點的軌跡方程。
2024-11-06 15:49
【摘要】直線與雙曲線一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(兩個交點,一個交點)位置關(guān)系與交點個數(shù)XYOXYO相交:兩個交點相切:一個交點相離:0個交點相交:一個交點總結(jié)兩個交點一個交點
2024-11-09 01:24
【摘要】上海市八中學的距離:到直線點0)0(:),(2200?????bacbyaxlyxP2200||bacbyaxd????兩條平行線l1:ax+by+c1=0與l2:ax+by+c2=0的距離:.||2221baccd???問題1:已知△ABC的三個頂點坐標分別為A(1,3)、B(3,1)、C(?1,0),求△
2024-08-25 01:49
【摘要】橢圓的標準方程舊人教版高二數(shù)學上冊第八章生活舉例:橢圓第一定義:平面內(nèi)到兩個定點F1,F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓.?其中兩個定點F1,F2叫做橢圓的焦點;?兩焦點間的距離叫做橢圓的焦距.知識鏈接:以直線F1F2為x軸,線段F1F2的垂直平分
2024-11-12 17:11
【摘要】第十一節(jié)函數(shù)與方程基礎(chǔ)梳理1.函數(shù)零點的定義(1)把使函數(shù)y=f(x)的值為___的實數(shù)x稱為函數(shù)y=f(x)的零點.(2)函數(shù)y=f(x)的零點就是方程f(x)=0的_____,從圖象上看,函數(shù)y=f(x)的零點就是它的圖象與x軸交點的________.2.函數(shù)零點的判定若函數(shù)y=f(x)在區(qū)間
2024-11-12 17:26
【摘要】主講人:董生麟數(shù)學高考專題復(fù)習圓錐曲線回顧例1:已知ΔABC底邊BC的長為2a(a0),又知tgBtgC=t(t≠0).(a,t均為常數(shù)).求頂點A的軌跡.BCAyx[思路分析]:首先建立適當?shù)淖鴺讼?設(shè)出動點A及定點B、C的坐標,如何
2024-11-10 03:06
【摘要】圓錐曲線橢圓雙曲線拋物線定義標準方程幾何性質(zhì)直線與圓錐曲線的位置關(guān)系一、知識點框架雙曲線的定義:1212||||||2,(02||)MFMFaaFF????橢圓的定義:|)|2(,2||||2121FFaaM
2024-08-25 02:16
2024-11-09 01:25
【摘要】《求曲線的方程》引例:在美麗的南沙群島中,甲島與乙島相距8海里,一艘軍艦在海上巡邏,巡邏過程中,從軍艦上看甲乙兩島,保持視角為直角,你認為軍艦巡邏的路線應(yīng)是怎樣的曲線,你能為它寫出一個方程嗎?例1、設(shè)A、B兩點的坐標是(-1,-1)和(2,3),求線段AB的垂直平分線的方程?xyoAB思考:①
2024-11-09 08:46
【摘要】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個定點12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個定點12,FF的距離的和等于常數(shù)(大于12FF)的點的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-09 00:53
【摘要】知識指要橢圓注1:總有ab0,c2=a2-b2xOyF1F2MxOyF1F2M注2:判斷橢圓標準方程的焦點在哪個軸上的準則:焦點在分母大的那個軸上注3:橢圓上到焦點的距離最大和最小的點是橢圓長軸的兩個端點知識指要橢圓1、橢圓第
2024-11-09 23:28
【摘要】二次曲線小結(jié)曹楊職校授課人:陳開運二次曲線小結(jié)二次曲線小結(jié)附錄二次曲線發(fā)展史目標診斷題綱要信號圖表學習導(dǎo)航與要求概念的精細化曲線的個性與共性技巧與題型歸類圓橢圓雙曲線雙曲線
2024-11-13 11:41
【摘要】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【摘要】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-11-30 11:22