【正文】
?? .)( ??? Axf恒有,0????Axfx ???? )(lim?.)(,0 22 ???????? AxfXxX 恒有時(shí)使當(dāng)},m ax{ 21 XXX ?取 時(shí),當(dāng) Xx ?.)( ??? Axf恒有Axfx ?? ?? )(lim???? Axfx )(l i m .)(lim)(lim AxfAxf xx ?? ?????? 且結(jié)論: 2a r c t a nl i m??????xx?2a r c t a nlim?????xx例 7 不存在xx a r c t a nl i m ???0 x y xy a r c t a n?2?2??2a r c t a nlim??????xx證明證 ???????? |2a r c t a n||)2(a r c t a n| xx解不等式 2a rc t a n2???? ????? x得 )2t a n ( ????x即 0)2t a n ( ?????X取 ,限制 )2( ???.2a r c t a nlim ?????? xx即)2t a n ( ?????),2(0 ?????? 限制則,有 ????? |)2(a r c t a n| x,時(shí)當(dāng) Xx ??小結(jié) 若自變量 x 在某種變化趨勢(shì)下, 函數(shù) f(x)無限接近于常數(shù) A, 則稱函數(shù)在這種變化趨勢(shì)下極限為 A. 時(shí),當(dāng) XxX ??? ,0 )(lim xfx ???時(shí),當(dāng) XxX ???? ,0時(shí),當(dāng) XxX ??? ||,0時(shí),當(dāng) ),(,0 00 ????? xUx時(shí),當(dāng) ),(,0 00 xxx ??????時(shí),當(dāng) ),(,0 00 ?????? xxx)(lim xfx ???)(lim xfx ??)(lim0xfxx ??)(lim0xfxx ??(不管它 有多小 ) ,0?????? |)(| Axf? A?? A?? A?)(lim0xfxx ?? A?? A?A??函數(shù) 極限的性質(zhì) 定理 2(函數(shù)極限的局部有界性) 證 ,1??? 對(duì)于.1)( ?? Axf有|)(| xf? ||)( AAxf ??? ||1 A?? M?證明類似數(shù)列極限