【摘要】精品資源雙曲線及其標(biāo)準(zhǔn)方程 一、教學(xué)目標(biāo)(一)知識教學(xué)點使學(xué)生掌握雙曲線的定義和標(biāo)準(zhǔn)方程,以及標(biāo)準(zhǔn)方程的推導(dǎo).(二)能力訓(xùn)練點在與橢圓的類比中獲得雙曲線的知識,從而培養(yǎng)學(xué)生分析、歸納、推理等能力.(三)學(xué)科滲透點本次課注意發(fā)揮類比和設(shè)想的作用,與橢圓進(jìn)行類比、設(shè)想,使學(xué)生得到關(guān)于雙曲線的定義、標(biāo)準(zhǔn)方程一個比較深刻的認(rèn)識.二、教材分析1.重點:雙曲線的
2025-07-14 15:53
【摘要】橢圓與雙曲線定義的應(yīng)用2.雙曲線的定義:平面內(nèi)與兩個定點12,FF的距離的差的絕對值等于常數(shù)(小于12FF)的點的軌跡叫做雙曲線.1.橢圓的定義:平面內(nèi)到兩個定點12,FF的距離的和等于常數(shù)(大于12FF)的點的軌跡叫橢圓.思考一:(課本54PB組第2題)
2024-11-09 00:53
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(教學(xué)設(shè)計)一、教學(xué)目標(biāo):知識與技能:()理解雙曲線的定義及焦點、焦距的意義,掌握雙曲線的標(biāo)準(zhǔn)方程.()根據(jù)不同的題設(shè)條件,正確區(qū)分兩種不同的標(biāo)準(zhǔn)方程.過程與方法:()引導(dǎo)學(xué)生,通過與橢圓的對比去探索雙曲線標(biāo)準(zhǔn)方程的推導(dǎo),加深對數(shù)形結(jié)合思想及事物類比的研究方法的認(rèn)識.()從建立坐標(biāo)系、簡化方程過程中,培養(yǎng)學(xué)生觀察、分析、推理的能力.情感態(tài)
2025-07-14 18:41
【摘要】雙曲線的性質(zhì)(一)莫旗職教中心徐志宏222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)122
2024-11-30 11:22
【摘要】1、我們知道和等于常數(shù)2a(2a|F1F2|)的點的軌跡是平面內(nèi)與兩定點F1、F2的距離的2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的橢圓1F2F??0,c???0,cXYO??yxM,①如圖(A
2025-08-05 03:58
【摘要】2例題講評[例1]已知定點F1(-3,0),F(xiàn)2(3,0),坐標(biāo)平面上滿足下列條件之一的動點P的軌跡:12(1)8PFPF???12(6)5PFPF???12(2)6PFPF??12(4)4PFPF??12(5
2025-08-05 01:15
【摘要】橢圓定義及標(biāo)準(zhǔn)方程(3)橢圓定義及標(biāo)準(zhǔn)方程(3)---復(fù)習(xí)舊知(1)寫出圓的標(biāo)準(zhǔn)方程、參數(shù)方程。(2)橢圓的標(biāo)準(zhǔn)方程是什么?(3)求曲線方程的基本方法有哪幾種?橢圓定義及標(biāo)準(zhǔn)方程(3)---新知探究例3如圖,已知一個圓的圓心為坐標(biāo)原點,半徑為2,從這個圓上任意一點P向x軸作垂線PP1,求線段PP1中點M的軌跡。
2024-11-09 01:54
【摘要】雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時,曲線只表示焦點F2所對應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時,曲線只表
2025-07-14 18:45
【摘要】......雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F
2025-07-14 18:54
【摘要】雙曲線及其標(biāo)準(zhǔn)方程練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年5月2日一、選擇題1.平面內(nèi)到兩定點E、F的距離之差的絕對值等于|EF|的點的軌跡是( )A.雙曲線 B.一條直線C.一條線段 D.兩條射線2.已知方程-=1表示雙曲線,則k的取值范圍是( )A.-10C.k≥0 D.
2025-06-23 15:30
【摘要】一、轉(zhuǎn)移代入法這個方法又叫相關(guān)點法或坐標(biāo)代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關(guān)系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(1)復(fù)習(xí)與問題1,橢圓的第一定義是什么?平面內(nèi)與兩定點F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓。F1F2MM思考到平面上兩定點F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點的軌跡是什么?
2025-01-14 07:30
【摘要】橢圓的標(biāo)準(zhǔn)方程舊人教版高二數(shù)學(xué)上冊第八章生活舉例:橢圓第一定義:平面內(nèi)到兩個定點F1,F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫做橢圓.?其中兩個定點F1,F2叫做橢圓的焦點;?兩焦點間的距離叫做橢圓的焦距.知識鏈接:以直線F1F2為x軸,線段F1F2的垂直平分
2024-11-12 17:11
【摘要】雙曲線的性質(zhì)(三)橢圓與直線的位置關(guān)系及判斷方法判斷方法?0(1)聯(lián)立方程組(2)消去一個未知數(shù)(3)復(fù)習(xí):相離相切相交一:直線與雙曲線位置關(guān)系種類XYO種類:相離;相切;相交(0個交點,一個交點,一個交點或兩個交點)位置關(guān)系與交
2024-11-18 07:54
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析雙曲線要點·疑點·考點(1)雙曲線的第一定義:平面內(nèi)與兩個定點F1、F2的距離差的絕對值是常數(shù)(小于|F1F2|)(2)雙
2024-11-18 15:24