【摘要】第3講平面向量的數(shù)量積A級基礎(chǔ)演練(時(shí)間:30分鐘滿分:55分)一、選擇題(每小題5分,共20分)1.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為().A.-32C.2D.6解析由a·b=3
2024-12-08 08:09
【摘要】第五章向量平面向量的數(shù)量積及運(yùn)算律(2)平面向量的數(shù)量積及運(yùn)算律(2)一.復(fù)習(xí):1、平面向量的數(shù)量積的定義記作=已知兩個非零向量和,它們的夾角為?,我們把數(shù)量abba?即有
2024-08-10 17:41
【摘要】課前探究學(xué)習(xí)課堂講練互動活頁規(guī)范訓(xùn)練掌握空間向量夾角的概念及表示方法,掌握兩個向量的數(shù)量積概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.掌握兩個向量的數(shù)量積的主要用途,會用它解決立體幾何中一些簡單的問題.空間向量的數(shù)量積運(yùn)算【課標(biāo)要求】【核心掃描】空間向量的數(shù)量積運(yùn)算.(重點(diǎn))利用空間向量的數(shù)量積求夾角及距離.(
2025-06-12 19:01
【摘要】......平面向量練習(xí)題一.填空題。1.等于________.2.若向量=(3,2),=(0,-1),則向量2-的坐標(biāo)是________.3.平面上有三個點(diǎn)A(1,3),B(2,2),C(7,x),若∠ABC=90
2025-06-22 14:32
【摘要】××××中學(xué)教學(xué)設(shè)計(jì)方案年月日星期第節(jié)課題平面向量的坐標(biāo)運(yùn)算章節(jié)第五章第二節(jié)教學(xué)目的知識目標(biāo)1.了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,會用坐標(biāo)形式進(jìn)行向量
2024-08-13 16:11
【摘要】平面向量練習(xí)題一.填空題。1.等于________.2.若向量a=(3,2),b=(0,-1),則向量2b-a的坐標(biāo)是________.3.平面上有三個點(diǎn)A(1,3),B(2,2),C(7,x),若∠ABC=90°,則x的值為________.、b滿足|a|=1,|b|=,(a+b)⊥(2a-b),則向量a與b的夾角為________.5.已知向量a=(
2025-06-23 18:41
【摘要】選擇題已知a,b是平面內(nèi)兩個互相垂直的單位向量,若向量c滿足(a-c)·(b-c)=0,則|c|的最大值是(???).A.1???B.2???C.???D.C???又∵,,,∴
2025-06-25 15:23
【摘要】課時(shí)作業(yè)(十五)一、選擇題1.設(shè)a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|=;③a2b=b2a;④(3a+2b)·(3a-2b)=9|a|2-4|b|( )A.①② B.②③ C.③④ D.②④【解析】 由于數(shù)量積不滿足結(jié)合律,故①不正確,由數(shù)量積的性質(zhì)知②正確,③中|a|
2025-03-25 06:42
【摘要】平面向量的坐標(biāo)運(yùn)算教案一、教學(xué)目標(biāo)1、知識與技能:掌握平面向量的坐標(biāo)運(yùn)算;2、過程與方法:通過對共線向量坐標(biāo)關(guān)系的探究,提高分析問題、解決問題的能力。3情感態(tài)度與價(jià)值觀:學(xué)會用坐標(biāo)進(jìn)行向量的相關(guān)運(yùn)算,理解數(shù)學(xué)內(nèi)容之間的內(nèi)在聯(lián)系。二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算。教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確.三、教學(xué)設(shè)想(一
2025-04-17 01:00
【摘要】平面向量的數(shù)乘運(yùn)算知識點(diǎn)一:向量數(shù)乘運(yùn)算:⑴實(shí)數(shù)與向量的積是一個向量的運(yùn)算叫做向量的數(shù)乘,記作.①;②當(dāng)時(shí),的方向與的方向相同;當(dāng)時(shí),的方向與的方向相反;當(dāng)時(shí),.⑵運(yùn)算律:①;②;③.⑶坐標(biāo)運(yùn)算:設(shè),則.知識點(diǎn)二:向量共線定理:向量與共線,當(dāng)且僅當(dāng)有唯一一個實(shí)數(shù),使.設(shè),,其中,則當(dāng)且僅當(dāng)時(shí),向量、共線.知識點(diǎn)三:平面向量基本定理:如果、是同一平面內(nèi)的
2025-06-25 14:48
【摘要】平面向量的坐標(biāo)運(yùn)算平面向量共線的坐標(biāo)表示問題提出?若e1、e2是同一平面內(nèi)的兩個不共線向量,則對于這一平面內(nèi)的任意向量a,有且只有一對實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2.?設(shè)i、j是與x軸、y軸同向的兩個單位向量,若a=xi+yj,則a=(x,y).,使得向量具有代數(shù)特征,并
2025-07-19 00:10
【摘要】平面向量的實(shí)際背景及基本概念平面向量的線性運(yùn)算——教材解讀山東劉乃東一、要點(diǎn)精講1.向量的有關(guān)概念(1)向量:既有大小又有方向的量叫向量,一般用,,,…來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如。向量的大小,即向量的模(長度),記作。注:向量與數(shù)量不同,數(shù)量之間可以比較大小,而兩個向量不能比較大小。(2)零向量:長度為零的向量
2024-08-30 16:13
【摘要】平面向量專題復(fù)習(xí)考點(diǎn)一、平面向量的概念,線性表示及共線定理題型一、平面向量的概念1.給出下列命題:①若|a|=|b|,則a=b;②若A,B,C,D是不共線的四點(diǎn),則=是四邊形ABCD為平行四邊形的充要條件;③若a=b,b=c,則a=c;④a=b的充要條件是|a|=|b|且a∥b;⑤若a∥b,b∥c,則a∥( )A.②③ B.①②C.③④D.④⑤2.設(shè)a
2025-04-17 02:37
【摘要】1思考1數(shù)量積的性質(zhì)思考2數(shù)量積的運(yùn)算律引入數(shù)量積運(yùn)算定義課堂練習(xí)空間向量的數(shù)量積運(yùn)算2022-11-052空間向量的數(shù)量積運(yùn)算(一)SF?W=|F||s|cos?根據(jù)功的計(jì)算,我們定義了平面兩向量的數(shù)量積運(yùn)算.一旦定義出來,我們發(fā)現(xiàn)這種運(yùn)算非常有用,它能解
2025-07-18 12:59
【摘要】向量數(shù)量積的坐標(biāo)運(yùn)算與度量公式說課流程教材分析教法分析教學(xué)過程學(xué)法分析評價(jià)反思地位和作用重點(diǎn)難點(diǎn)教學(xué)目標(biāo)教材的地位和作用本節(jié)課選自人教版B版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)④第二章第三單元第三節(jié),計(jì)1課時(shí).本節(jié)課是在學(xué)生學(xué)習(xí)了向量的線性運(yùn)算、坐標(biāo)運(yùn)算和向量數(shù)量積的
2025-07-23 05:52