【摘要】不等式不等式不等式不等式不等式的應(yīng)用.不等式的應(yīng)用性質(zhì)1(傳遞性)如果ab,bc,則ac.性質(zhì)2(加法法則)如果ab,那么a+cb+c.性質(zhì)3(乘法法則)如果a&
2024-11-21 05:33
【摘要】武勝中學(xué)高2009級(jí)培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實(shí)數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號(hào)當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時(shí)取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【摘要】CNG站畢業(yè)論文目錄1緒論.....................................................................................................................................1天然氣加氣站發(fā)展概述...............................
2025-06-28 08:01
【摘要】......基本不等式及應(yīng)用一、考綱要求:.2.會(huì)用基本不等式解決簡(jiǎn)單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號(hào)成立的條件≤a0,
2025-05-13 23:12
【摘要】不等式的綜合應(yīng)用問題【要點(diǎn)】1.不等式的應(yīng)用非常廣泛,它貫穿于整個(gè)高中數(shù)學(xué)的始終,諸如集合問題,方程(組)的解的討論.函數(shù)定義域、值域的確定,函數(shù)單調(diào)性的研究,三角、數(shù)列、復(fù)數(shù)、立體幾何中的最值問題、解析幾何中的直線與圓錐曲線位置關(guān)系的討論,等等,這些無一不與不等式有著密切的關(guān)系.2.不等式的應(yīng)用大致可分為兩類:一類是建立不等式求參數(shù)的取
2024-11-11 03:20
【摘要】第八講不等式與不等式組一、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)圖二、考點(diǎn)精析考點(diǎn)一:不等式基本性質(zhì)運(yùn)用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】不等式與不等式組專題復(fù)習(xí)(一)不等式考點(diǎn)1:不等式的定義知識(shí)點(diǎn)::用符號(hào)“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號(hào)表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
【摘要】《不等式及其解集》教學(xué)設(shè)計(jì)陜西省大荔縣安仁初中張娟一、內(nèi)容和內(nèi)容解析(一)內(nèi)容概念:不等式、不等式的解、不等式的解集、解不等式以及能在數(shù)軸上表示簡(jiǎn)單不等式的解集.(二)內(nèi)容解析現(xiàn)實(shí)生活中存在大量的相等關(guān)系,也存在大量的不等關(guān)系.本節(jié)課從生活實(shí)際出發(fā)導(dǎo)入常見行程問題的不等關(guān)系,使學(xué)生充分認(rèn)識(shí)到學(xué)習(xí)不等式的重要性和必然性,激發(fā)他們的求知欲望.再通過對(duì)實(shí)例的進(jìn)一步深入分
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號(hào)的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】柯西不等式各種形式的證明及其應(yīng)用????n? ??? ?bk??3??akakbk?÷柯西不等式是由大數(shù)學(xué)家柯西(Cauchy)在研究數(shù)學(xué)分析中的“流數(shù)”問題時(shí)得到的。但從歷史的角度講,
2025-06-23 14:37
【摘要】分塊矩陣的基本性質(zhì)及其應(yīng)用畢業(yè)論文目錄摘要 IAbstract II第一章前言 1第二章:分塊矩陣 1 1 1 1 1 2第三章:分塊矩陣的應(yīng)用 3 3 5 7 9致謝 11參考文獻(xiàn) 12IV第一章前言在高等代數(shù)中,矩陣是一項(xiàng)很重要的內(nèi)容
2025-06-24 14:44
【摘要】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號(hào)語言來表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
【摘要】高二數(shù)學(xué)競(jìng)賽班二試講義第一講琴生不等式、冪平均不等式一、知識(shí)要點(diǎn):1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域?yàn)?,?duì)于區(qū)間內(nèi)任意兩點(diǎn),都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個(gè)點(diǎn)重合時(shí)“邊形”的重心在圖
2025-08-04 18:32
【摘要】正態(tài)分布的若干理論及其應(yīng)用畢業(yè)論文目錄引言: 11.正態(tài)分布概念 1 2m和s的意義 3 4 4 4 5(x1,x2)內(nèi)的概率計(jì)算 7~N(0,1)時(shí)的概率計(jì)算 8ξ~N(m,s)時(shí)的概率計(jì)算 9~N(m,s)的分布函數(shù) 9 106.正態(tài)分布在幾個(gè)領(lǐng)域內(nèi)的應(yīng)用實(shí)例 12.已知m,s求某條件下的概率[8
2025-06-19 02:49