【摘要】圓錐曲線與方程第二章●情景導(dǎo)學(xué)北京時間2003年10月15日9時9分50秒,我國自行研制的“神舟”5號載人飛船,在酒泉衛(wèi)星發(fā)射基地發(fā)射升空后,準(zhǔn)確進(jìn)入預(yù)定軌道,中國首位航天員被順利送上太空.“神舟”5號飛船運(yùn)行的軌道面和地球的赤道面之間成43°的夾角,在太空繞地球飛行14圈,歷時
2024-11-16 23:22
【摘要】一、復(fù)習(xí):橢圓、雙曲線、拋物線:平面內(nèi),到一個定點(焦點F)和一條定直線(準(zhǔn)線l)的距離之比等于常數(shù)(離心率e)的點的軌跡。3.FLxLFxFxL當(dāng)0e1時,方程表示橢圓,F(xiàn)是左焦點,l是左準(zhǔn)線。當(dāng)1e時,方程表示雙曲線,F(xiàn)
2025-08-05 04:36
【摘要】WORD資料可編輯課題名稱《圓錐曲線與方程》單元教學(xué)設(shè)計設(shè)計者姓名郭曉泉設(shè)計者單位華亭縣第二中學(xué)
2025-05-12 01:30
【摘要】大慶目標(biāo)教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標(biāo)都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【摘要】軌跡方程的若干求法,供同學(xué)們參考.一、直接法直接根據(jù)等量關(guān)系式建立方程. 例1 已知點,動點滿足,則點的軌跡是( ) ?。粒畧A B.橢圓 C.雙曲線 D.拋物線 解析:由題知,, 由,得,即, 點軌跡為拋物線.故選D. 二、定義法 運(yùn)用有關(guān)曲線的定義求軌跡方程. 例2 在中,上的兩條中線長度之和為39,求的重心的軌跡方程.
2025-07-20 00:18
【摘要】......§知識要點一、橢圓方程.1.橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i.中心在原點,焦點在x軸上:.ii.中心在原點,焦點在軸上:.②一般方程:.③橢
2025-06-22 23:13
【摘要】2.(2020·浙江卷)設(shè)拋物線y2=2px(p0)的焦點為F,點A(0,2).若線段FA的中點B在拋物線上,則B到該拋物線準(zhǔn)線的距離為___.分析:一般情況下,此類問題是求離心率的值,而這里卻是求離心率的取值范
2025-08-14 05:42
【摘要】2013-2014學(xué)年度第二學(xué)期3月月考高二數(shù)學(xué)試卷滿分:150分,時間:120分鐘一、選擇題:(本大題共12小題,每小題5分,共60分)1、拋物線y2=-2px(p0)的焦點為F,準(zhǔn)線為,則p表示()A、F到準(zhǔn)線的距離B、F到y(tǒng)軸的距離C、F
2025-08-05 05:09
【摘要】圓錐曲線復(fù)習(xí)(二)數(shù)學(xué)高二年級例1已知雙曲線的中心在原點,且一個焦點為F,直線與其相交于M、N兩點,MN中點的橫坐標(biāo)為,則此雙曲線的方程是______.解:解得所求雙曲線方程例2橢圓
2024-11-06 23:19
【摘要】第1頁共35頁普通高中課程標(biāo)準(zhǔn)實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標(biāo)要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強(qiáng)等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進(jìn)一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【摘要】河北定興中學(xué)2021—2021學(xué)年第一學(xué)期雙曲線期末復(fù)習(xí)單元測試題一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的)1.雙曲線221102xy??的焦距為()A.32B.42C.33D.432.“雙曲線的方程為
2024-12-01 09:33
【摘要】2021年黃梅三中高二數(shù)學(xué)下2-1單元訓(xùn)練題(2)命題人:張翼審題人:陳志文一、選擇題(本題每小題5分,共50分)A(-1,0),B(1,0),點C(x,y)滿足:414)1(22????xyx,則??BCAC()A.6B.4C.2
2024-11-30 13:02
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準(zhǔn)線方程、焦點坐標(biāo)等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【摘要】曲線方程及圓錐曲線典型例題解析一.知識要點1.曲線方程(1)求曲線(圖形)方程的方法及其具體步驟如下:步驟含義說明1、“建”:建立坐標(biāo)系;“設(shè)”:設(shè)動點坐標(biāo)。建立適當(dāng)?shù)闹苯亲鴺?biāo)系,用(x,y)表示曲線上任意一點M的坐標(biāo)。(1)所研究的問題已給出坐標(biāo)系,即可直接設(shè)點。(2)沒有給出坐標(biāo)系,首先要選取適當(dāng)?shù)淖鴺?biāo)系。2、現(xiàn)
2025-07-26 09:19
【摘要】圓錐曲線軌跡方程的解法目錄一題多解 2一.直接法 3二.相關(guān)點法 6三.幾何法 10四.參數(shù)法 12五.交軌法 14六.定義法 16一題多解設(shè)圓C:(x-1)2+y2=1,過原點O作圓的任意弦OQ,求所對弦的中點P的軌跡方程。一.直接法設(shè)P(
2025-06-22 19:28