【摘要】引入特征值與特征向量的動機(jī)1.旋轉(zhuǎn)變換的軸2.橢圓的軸3.矩陣對角化4.研究線性變換特征值與特征向量的引入定義A為n階方陣,x為向量稱為一個從x到y(tǒng)的一般來說,x,y沒有太多關(guān)系。但有時它們成比例。yxA?的線性變換。Axx??()0AEx?????此時|A-
2025-01-19 14:39
【摘要】特征值與特征向量上一講我們介紹了怎樣求一個方陣的特征值及特征向量的算法,那就是首先求解特征方程det(A-?I)=0它的所有根即為A的所有特征值,然后針對每個特征值?求解齊次方程(A-?I)X=O的基礎(chǔ)解系,即為此特征值的各個線性無關(guān)的特征向量。當(dāng)然,如果不是重根,則每個特征值必有且只有一個特征向量而這是實(shí)際應(yīng)用中的大多數(shù)情況,但比較麻煩的是特征
2024-10-19 02:35
【摘要】插值與擬合一、插值在工程實(shí)踐和科學(xué)實(shí)驗(yàn)中,常常需要從一組實(shí)驗(yàn)觀測數(shù)據(jù),揭表示自變量x與因變量y之間的關(guān)系,通??梢圆捎脙煞N方法:曲線擬合和插值.插值在工程實(shí)踐和科學(xué)實(shí)驗(yàn)中有著非常廣泛而又十分重要的應(yīng)用,例如,信息技術(shù)中的圖像重建、圖像放大中為避免圖像的扭曲失真的插值補(bǔ)點(diǎn)、建筑工程的外觀設(shè)計(jì)。化學(xué)工程實(shí)驗(yàn)數(shù)據(jù)與模型的分析、天文
2025-06-19 16:22
【摘要】南昌工程學(xué)院畢業(yè)論文理學(xué)系(院)信息與計(jì)算科學(xué)專業(yè)畢業(yè)論文題目非線性方程組的數(shù)值算法研究學(xué)生姓名張浩浩
2025-05-11 14:29
【摘要】第五章《特征值與特征向量》自測題(100分鐘)一、填空題:(共18分,每小題3分)1、設(shè)三階矩陣的特征值為-1,1,2,則-1的特征值為();*的特征值為();(3+)的特征值為()。2、設(shè)三階矩陣=0,則的全部特征向量為()。3、若~E,則=()。4、已
2025-06-07 21:54
【摘要】矩陣的特征值與特征向量分析及應(yīng)用畢業(yè)論文摘要特征值和特征向量是高等代數(shù)中的一個重要概念,為對角矩陣的學(xué)習(xí)奠定了基礎(chǔ).本文在特征值和特征向量定義的基礎(chǔ)上進(jìn)一步闡述了特征值和特征向量的關(guān)系.本文還研究矩陣的特征值和特征向量的求解方法.再列舉了特征值和特征向量相關(guān)的性質(zhì).最后給出了陣的特征值與特征向量在生活中的運(yùn)用,并應(yīng)用于實(shí)例.關(guān)
2025-08-18 00:08
【摘要】第六章非線性方程組的迭代解法教學(xué)目的1.掌握解非線性方程(組)的二分法和插值法;2.掌握解非線性方程(組)的一般迭代法及有關(guān)收斂性的證明與牛頓法;3.掌握解非線性方程(組)的牛頓法4.了解加速收斂的方法。教學(xué)重點(diǎn)及難點(diǎn)重點(diǎn)是解非線性方程(組)的牛頓法;難點(diǎn)是迭代法的收斂性的證明。第6章非線性方程
2025-07-19 03:06
【摘要】本科生畢業(yè)論文設(shè)計(jì)特征值與特征向量的應(yīng)用作者姓名:盧超男指導(dǎo)教師:蘭文華所在學(xué)部:信息工程學(xué)部專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級(屆):2022屆2班二〇一三年四月二十六日目錄摘要.............................................................1緒論...............
2025-01-16 14:16
【摘要】題目:非線性方程求解算法的程序設(shè)計(jì)及比對摘要由于五次及其以上代數(shù)方程式大多不能用代數(shù)公式求解非線性方程的解.或者求解非常復(fù)雜。而在工程和科學(xué)技術(shù)中許多問題常常歸結(jié)為求解非線性方程式問題.所以需要研究非線性方程的數(shù)值解法的問題是非常重要.來適應(yīng)我們社會的需要.本課題主要介紹非線性方程的數(shù)值解法是直接從方程出發(fā),逐步縮小根的
2025-06-04 22:47
【摘要】題目:非線性方程求解算法的程序設(shè)計(jì)及比對摘要。.本課題主要介紹非線性方程的數(shù)值解法是直接從方程出發(fā),逐步縮小根的存在區(qū)間,或逐步將根的近似值精確化,直到滿足問題對精度的要求,主要的方法有二分法,迭代法,牛頓法,弦截法等。并寫出這幾種非線性方程的數(shù)值解法的算法和程序及其優(yōu)缺點(diǎn)和計(jì)算條件.關(guān)鍵詞二分法;牛頓迭代法;弦截法法;程序框架圖;C語言編程
2025-01-18 17:37
【摘要】線性方程組的求解中國青年政治學(xué)院鄭艷霞?使用建議:建議教師具備簡單的MATHMATICA使用知識。?課件使用學(xué)時:4學(xué)時?面向?qū)ο螅何目平?jīng)濟(jì)類本科生?目的:掌握線性方程組的知識點(diǎn)學(xué)習(xí)。為民主黨投票為共和黨投票為自由黨投票?????
2024-09-28 12:10
【摘要】第一節(jié)矩陣矩陣概念的引入矩陣的定義小結(jié)第二章矩陣11112211211222221122nnnnnnnnnnaxaxaxbaxaxaxbaxaxaxb???????????
2025-08-05 10:12
【摘要】線性方程組的解法解線性方程組的迭代法IterativeMethodsforLinearSystemsJacobi迭代和Gauss-Seidel迭代迭代法的矩陣表示MatrixformoftheIterativeMethods線性方程組的解法在計(jì)算數(shù)學(xué)中占有極其重要的地位。線性方程組的解法大致分為迭代法與直接法
2025-08-07 11:23
【摘要】數(shù)學(xué)系UniversityofScienceandTechnologyofChinaDEPARTMENTOFMATHEMATICS第7章矩陣的特征值和特征向量很多工程計(jì)算中,會遇到特征值和特征向量的計(jì)算,如:機(jī)械、結(jié)構(gòu)或電磁振動中的固有值問題;物理學(xué)中的各種臨界值等。這些特征值的計(jì)算往往意義重大。數(shù)學(xué)
2025-08-23 09:06
【摘要】畢業(yè)論文專業(yè):信息與計(jì)算科學(xué)題目:求解Jacobi矩陣特征值反問題的數(shù)值方法求解Jacob
2025-06-22 16:25