【摘要】MATLAB@SDU1數(shù)值微積分以及數(shù)值分析MATLAB@SDU2數(shù)值微分數(shù)值微分的實現(xiàn)兩種方式計算函數(shù)f(x)在給定點的數(shù)值導數(shù):者樣條函數(shù)2.利用數(shù)據(jù)的有限差分在MATLAB中,沒有直接提供求數(shù)值導數(shù)的函數(shù),只有計算向前差分的函數(shù)diff,其調用格式為:DX=diff(X):計算向量X的向前差
2025-05-05 18:17
【摘要】Chapt5導數(shù)和微分15世紀文藝復興以后的歐洲,資本主義逐漸發(fā)展,采礦冶煉、機器發(fā)明、商業(yè)交往、槍炮制造、遠洋航海、天象觀測等大量實際問題,給數(shù)學提出了前所未有的亟待解決的新課題。其中有兩類問題導致了導數(shù)概念的產生:(1)求變速運動的瞬時速度;(2)求曲線上一點處的切線。這兩類問題都歸結為變量變化的快慢程度,即變化率問題。
2025-08-11 09:14
【摘要】大學數(shù)學銀杏酒店管理學院第二章導數(shù)與微分大學數(shù)學銀杏酒店管理學院?教學內容:導數(shù)的定義導數(shù)的幾何意義可導與連續(xù)的關系?教學要求
2025-07-25 04:26
【摘要】第五節(jié)高階偏導數(shù)本節(jié)主要講兩個問題:一、什么是高階偏導數(shù)二、在什么條件下混合偏導數(shù)相等多元函數(shù)的高階偏導數(shù)與一元函數(shù)的高階導數(shù)類似:一般情況下,函數(shù)的偏導數(shù)還是的函數(shù),如果的偏導數(shù)還存在,則稱它們的偏導數(shù)為的二階偏導數(shù).即:函數(shù)一階偏導數(shù)的偏導數(shù),稱為原來函數(shù)的二階偏導數(shù).函數(shù)二階偏導數(shù)
2025-04-30 18:09
【摘要】返回后頁前頁§8微分中值定理與導數(shù)的應用二、典型例題一、內容提要習題課返回后頁前頁一、內容提要1.理解羅爾(Rolle)定理和拉格朗日(Lagrange)定理.2.了解柯西(Cauchy)定理和泰勒(Taylor)定理.3.理解函數(shù)的極值概念,掌握用導數(shù)判斷函數(shù)的單調
2025-04-29 06:27
【摘要】上頁下頁返回§二元函數(shù)的偏導數(shù)與全微分一、偏導數(shù)二、高階偏導數(shù)三、全微分上頁下頁返回一、偏導數(shù)定義1設函數(shù)(,)zfxy?在點00(,)xy的某一鄰域內有定義,當y固定在0y而x在0x處有增量x?時,相應地函數(shù)有增量
2025-07-25 16:45
【摘要】??????????第第8章章掃描電子顯微分析掃描電子顯微分析掃描電鏡的工作原理、和性能構造?1:SEM的主要結構包括電子光學系統(tǒng)、信號的收集和圖像顯示系統(tǒng)、真空系統(tǒng)三部分。?2:掃描電鏡重要指標是分辨率,是由特定樣品在特定工作狀
2025-01-15 04:31
【摘要】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習題2022/2/132二、高階導數(shù)第六講
2025-01-16 06:42
【摘要】第三單元微分中值定理與導數(shù)應用一、填空題1、__________。2、函數(shù)在區(qū)間______________單調增。3、函數(shù)的極大值是____________。4、曲線在區(qū)間__________是凸的。5、函數(shù)在處的階泰勒多項式是_________。6、曲線的拐點坐標是_________。7、若在含的(其中)內恒有二階負的導數(shù),且_______,則是在上的
2025-08-17 11:37
【摘要】偏導數(shù)與全微分習題1.設,求。2.習題817題。3.設,考察f(x,y)在點(0,0)的偏導數(shù)。4.考察在點(0,0)處的可微性。5.證明函數(shù)在點(0,0)連續(xù)且偏導數(shù)存在,但偏導數(shù)在(0,0)不連續(xù),而f(x,y)在點(0,0)可微。1.設,求。∴。
2025-07-24 22:32
【摘要】《高等數(shù)學》Ⅱ—Ⅰ課程教案第三章微分中值定理與導數(shù)的應用本章內容是上一章的延續(xù),主要是利用導數(shù)與微分這一方法來分析和研究函數(shù)的性質及其圖形和各種形態(tài),這一切的理論基礎即為在微分學中占有重要地位的幾個微分中值定理。在分析、論證過程中,中值定理有著廣泛的應用。一、教學目標與基本要求(一)知識、拉格朗日中值定理、柯西中值定理的條件和結論;;,sin(x),cos(
2025-06-24 23:00
【摘要】上一頁下一頁導數(shù)與微分習題課1.理解導數(shù)(含左導數(shù)、右導數(shù))和微分的定義及其幾何意義.7.知道一元函數(shù)可微、可導、連續(xù)、極限存在之間的關系:本章的計算重點是求函數(shù)的導數(shù).?可導?連續(xù)?極限存在.可微6.掌握隱函數(shù)的求導法及由參數(shù)方程表示的函數(shù)的求導法.5.了解高階導數(shù)的概念,能熟練地
2024-11-03 20:18
【摘要】定義含有未知函數(shù)的導數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2024-10-19 13:27
【摘要】1.導數(shù)的概念2.導數(shù)的運算3.隱函數(shù)及參數(shù)方程的函數(shù)的求導法則4.高階導數(shù)5.微分第二章導數(shù)與微分1.變速直線運動的瞬時速度??tSS?設有一質點作變速直線運動,其運動方程為§1導數(shù)的概念一.引例求:質點在??0tv時刻的瞬時速
2025-07-24 19:55
【摘要】第三章微分中值定理與導數(shù)的應用主講人:張少強TianjinNormalUniversity計算機與信息工程學院三、其他未定式二、型未定式一、型未定式00第二節(jié)洛必達法則微分中值定理函數(shù)的性態(tài)導數(shù)的性態(tài)函數(shù)之商的極限導數(shù)之商的極限轉化(或
2025-07-20 16:17