【摘要】課前探究學(xué)習(xí)課堂講練互動(dòng)活頁(yè)規(guī)范訓(xùn)練掌握空間向量夾角的概念及表示方法,掌握兩個(gè)向量的數(shù)量積概念、性質(zhì)和計(jì)算方法及運(yùn)算規(guī)律.掌握兩個(gè)向量的數(shù)量積的主要用途,會(huì)用它解決立體幾何中一些簡(jiǎn)單的問(wèn)題.空間向量的數(shù)量積運(yùn)算【課標(biāo)要求】【核心掃描】空間向量的數(shù)量積運(yùn)算.(重點(diǎn))利用空間向量的數(shù)量積求夾角及距離.(
2025-06-12 19:01
【摘要】空間向量運(yùn)算的坐標(biāo)表示1.空間向量的基本定理:2.平面向量的坐標(biāo)表示及運(yùn)算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個(gè)單位向量(,)pxy則的坐標(biāo)為1212(,),(,)aaabbb??(2)若11221122(,),(,)abab
2025-06-16 04:35
【摘要】共線向量與共面向量一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作ba//:對(duì)空間任意兩個(gè)向量的充要條件是存在實(shí)數(shù)使baobba//),(,?ba??
2025-08-05 18:38
【摘要】第二節(jié)向量組的秩Ch4向量空間定理1性質(zhì)1:性質(zhì)3:性質(zhì)2:定理4:定義1最大線性無(wú)關(guān)向量組最大無(wú)關(guān)組一、最大(線性)無(wú)關(guān)向量組一、最大(線性)無(wú)關(guān)向量組秩定理1二、矩陣與向量組秩的關(guān)系二、矩陣與向量組秩的關(guān)系結(jié)論:說(shuō)明:定理4:最大無(wú)關(guān)組B為行最簡(jiǎn)形矩陣定理2
2025-01-19 09:24
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向
2024-11-10 00:27
【摘要】向量及向量的基本運(yùn)算高三備課組1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行。注意與
2024-11-10 07:31
【摘要】 學(xué)習(xí)空間向量的竅門 由于空間向量是平面向量的推廣,空間向量所涉及的內(nèi)容與平面向量基本相似,框架結(jié)構(gòu)與平面向量基本一致,因此本節(jié)的教學(xué)方法,宜多采用類比法,在引導(dǎo)學(xué)生復(fù)習(xí)平面向量的相關(guān)知識(shí)的基礎(chǔ)上...
2024-09-26 08:01
【摘要】1北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設(shè)i,j,k是空間三個(gè)兩兩垂直的向量,且有公共起點(diǎn)O。對(duì)于空間任意一個(gè)向量p=OP,設(shè)點(diǎn)Q為點(diǎn)P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實(shí)數(shù)z,使得OP=OQ
2024-11-18 13:29
【摘要】2022屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件25《平面向量及向量的基本運(yùn)算》1)向量的有關(guān)概念①向量:既有大小又有方向的量。向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:。向量的大小即向量的模(長(zhǎng)度),記作||。②零向量:長(zhǎng)度為0的向量,記為,其方向
2025-07-25 15:40
【摘要】2.向量的減法?1.復(fù)習(xí)?(1)向量加法的定義是什么?定義:求兩個(gè)向量和的運(yùn)算,叫做向量的加法.(2)向量的加法的三角形法則:..,,,,,ACBCABbababaACbBCaABAba???????即的和,記作與叫做則向量作在平面內(nèi)任取一點(diǎn)如圖,已知向量
2024-11-06 16:51
【摘要】空間向量之應(yīng)用3利用空間向量求距離課本P42如果表示向量a的有向線段所在直線垂直于平面?,則稱這個(gè)向量垂直于平面?,記作a⊥?.如果a⊥?,那么向量a叫做平面?的法向量.?la課本P33已知向量ABa?和軸l,e是l上與l同方向的單位向量.作
2025-01-08 13:41
【摘要】 平面向量的正交分解及坐標(biāo)表示 平面向量的坐標(biāo)運(yùn)算 學(xué)習(xí)目標(biāo) 核心素養(yǎng) ,掌握向量的坐標(biāo)表示.(難點(diǎn)) ,掌握兩個(gè)向量和、差及數(shù)乘向量的坐標(biāo)運(yùn)算法則.(重點(diǎn)) .(易混點(diǎn)) ,...
2025-04-05 06:14
【摘要】向量的加法一、提問(wèn):1、什么叫向量?一般用什么表示?2、有向線段的三個(gè)要素是什么?3、什么叫相等向量?既有大小又有方向的量叫向量,一般用有向線段表示。三要素是:起點(diǎn)、方向和長(zhǎng)度。長(zhǎng)度相等且方向相同的向量叫相等向量。二、向量的加法:1、定義:求兩個(gè)向量和的運(yùn)算叫向量的加法。2、圖示:b
2024-11-09 06:49
【摘要】復(fù)習(xí)回顧函數(shù)y=x2的圖象經(jīng)過(guò)怎樣的變化得到函數(shù)y=(x-4)2+2的圖象?yxO1234123-1-2-3-1-2-3-4?先向右平移4個(gè)單位,?再向上平移2個(gè)單位。Q(4,2)(0,0)觀察圖象變化,說(shuō)說(shuō)它的特點(diǎn)?每一點(diǎn)都是按
【摘要】空間向量復(fù)習(xí)1、基礎(chǔ)知識(shí)2、向量法3、坐標(biāo)法廣州市第17中學(xué)數(shù)學(xué)科廖舜萍空間向量基礎(chǔ)知識(shí)?空間向量的坐標(biāo)表示:?空間向量的運(yùn)算法則:若奎屯王新敞新疆向量的共線和共面?共線:?共面?兩點(diǎn)間的距離公式?模長(zhǎng)公式?夾角公式
2024-11-09 05:40