【摘要】NumericalAnalysisJ.G.LiuSchoolofMath.&Phys.NorthChinaEle
2025-10-10 00:59
【摘要】1第5章矩陣特征值問題計算物理、力學(xué)和工程技術(shù)的很多問題在數(shù)學(xué)上都?xì)w結(jié)為求矩陣的特征值問題.例如,振動問題(大型橋梁或建筑物的振動、機械的振動、電磁振蕩等),物理學(xué)中某些臨界值的確定,這些問題都?xì)w結(jié)為下述數(shù)學(xué)問題)2()(det)det()(12211212222111211的項次
2025-10-07 21:17
【摘要】安徽建筑大學(xué)畢業(yè)設(shè)計(論文)開題報告題目矩陣特征值與特征向量求解及其應(yīng)用專業(yè)信息與計算科學(xué)姓名張浩班級10信息(2)班學(xué)號10207010233指導(dǎo)教師宮珊珊提交時間2022年3月4號
2025-01-18 23:44
【摘要】淺談特征值和特征向量的解法與應(yīng)用摘要特征值與特征向量是高等代數(shù)研究的中心問題之一,而矩陣特征值與特征向量的解法及其應(yīng)用更是重中之重,因此,在掌握特征值與特征向量概念、了解其基本性質(zhì)的基礎(chǔ)上,熟練掌握其在各種具體問題中的解法,并自然地將此知識應(yīng)用于其他領(lǐng)域顯得非常重要。關(guān)鍵詞:特征值;特征向量;解法;應(yīng)用一位數(shù)學(xué)家曾說過:“矩陣不僅節(jié)約思想,而且還節(jié)約黑板”。矩陣
2025-06-24 21:59
【摘要】安徽工程大學(xué)畢業(yè)設(shè)計(論文)-1-引言眾所周知,矩陣?yán)碚撛跉v史上至少可以追溯到Sylvester與Cayley,特別是Cayley1858年的工作。自從Cayley建立矩陣的運算以來,矩陣?yán)碚摫阊杆侔l(fā)展起來,矩陣?yán)碚撘咽歉叩却鷶?shù)的重要組成部分。近代數(shù)學(xué)的一些學(xué)科,如代數(shù)結(jié)構(gòu)理論與泛函分析可以在矩陣?yán)碚撝袑ふ宜鼈兊母?/span>
2025-06-04 04:50
【摘要】課程設(shè)計說明書題目:Hermite插值法的程序設(shè)計及應(yīng)用學(xué)生姓名:畢美喬學(xué)院:理學(xué)院班級:信計09-2指導(dǎo)教師:李曉瑜任文秀2020年1月5日學(xué)校代碼:
2025-05-20 15:15
【摘要】機床數(shù)控系統(tǒng)反求課程設(shè)計報告-----------------------作者:-----------------------日期:東華理工大學(xué)長江學(xué)院課程設(shè)計報告課程設(shè)計題目:專業(yè)課程設(shè)計性實驗4-機制方向機床數(shù)控系統(tǒng)反求學(xué)生姓名專業(yè):班
2025-05-14 01:19
【摘要】第六章統(tǒng)計特征值?統(tǒng)計特征值:指對統(tǒng)計調(diào)查的原始資料進(jìn)行整理后得到的可以精確描述統(tǒng)計數(shù)據(jù)分布的、具有代表性的數(shù)量特征。?具體有統(tǒng)計平均數(shù)、描述數(shù)據(jù)離散程度的指標(biāo)標(biāo)志變動度和描述分布形狀的指標(biāo)偏態(tài)和峰態(tài),然后介紹成數(shù)和常見的概率分布的特征值。第一節(jié)統(tǒng)計平均數(shù)特點-數(shù)量抽象性-反映集中
2025-05-03 01:51
【摘要】本科畢業(yè)論文論文題目:冪零矩陣的性質(zhì)與應(yīng)用學(xué)生姓名:白雪學(xué)號:1004970231專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級:數(shù)學(xué)1002班指導(dǎo)教師:徐穎玲
2025-01-13 18:17
【摘要】特征值與特征向量10010a?????????-????【探究】1、計算下列結(jié)果:10001b?????????-????0,0ab??????????????????以上的計算結(jié)果與的關(guān)系是怎樣的?2、計算下列結(jié)果
2025-05-01 12:11
【摘要】1關(guān)于冪零矩陣的幾個注記摘要:給出了n?冪零矩陣的一個新的性質(zhì),證明了矩陣為冪零的一個等價條件,修正與改進(jìn)了近期冪零矩陣的一些結(jié)果.關(guān)鍵詞:冪零矩陣;向量;特征值;矩陣的跡;伴隨還原陣OnseveralofnilpotentmatrixYangJiao(Schoolof
2025-08-02 00:25
【摘要】畢業(yè)論文專業(yè):信息與計算科學(xué)題目:求解Jacobi矩陣特征值反問題的數(shù)值方法求解Jacob
2025-06-22 16:25
【摘要】引入特征值與特征向量的動機1.旋轉(zhuǎn)變換的軸2.橢圓的軸3.矩陣對角化4.研究線性變換特征值與特征向量的引入定義A為n階方陣,x為向量稱為一個從x到y(tǒng)的一般來說,x,y沒有太多關(guān)系。但有時它們成比例。yxA?的線性變換。Axx??()0AEx?????此時|A-
2025-01-19 14:39
【摘要】特征值與特征向量上一講我們介紹了怎樣求一個方陣的特征值及特征向量的算法,那就是首先求解特征方程det(A-?I)=0它的所有根即為A的所有特征值,然后針對每個特征值?求解齊次方程(A-?I)X=O的基礎(chǔ)解系,即為此特征值的各個線性無關(guān)的特征向量。當(dāng)然,如果不是重根,則每個特征值必有且只有一個特征向量而這是實際應(yīng)用中的大多數(shù)情況,但比較麻煩的是特征
2025-10-10 02:35
【摘要】完美WORD格式資料“定區(qū)間動軸法”求區(qū)間最值所謂“定區(qū)間動軸法”,就是將自變量所在區(qū)間(或)標(biāo)在數(shù)軸上,無論該區(qū)間是動的還是靜的,根據(jù)運動的相對性,都將其看作“靜止”的,然后分對稱軸、≤≤、三種情況進(jìn)行討論,特別地,如果二次函數(shù)圖象開口向上求區(qū)間最大值或二次函
2025-06-26 20:32