freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

無錫市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題訓(xùn)練經(jīng)典題目(3)-全文預(yù)覽

2025-04-02 02:53 上一頁面

下一頁面
  

【正文】 形A,B,C,D的面積的和是E的面積是解決本題的關(guān)鍵.9.B解析:B【解析】【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出,即可得到三角形的形狀.【詳解】∵a+b=10,ab=18,∴=(a+b)22ab=10036=64,∵,c=8,∴=64,∴=,∴該三角形是直角三角形,故選:B.【點(diǎn)睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求出是解題的關(guān)鍵.10.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。=45176。∴∠A=∠DFB,∵∠ABC=45176?!螩BE+∠ACB=90176??芍猼an∠CAD= 即 ,解方程求出BD的長,從而可知BC的長,進(jìn)而求出救援艇到達(dá)C處所用的時間即可.【詳解】如圖:過點(diǎn)C作CD垂直AB延長線于D,則∠CDB=45176。故③正確;∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180176。若正方形A、B、C、D的邊長是3,則最大正方形E的面積是A.13 B.2 C.47 D.9.已知三角形的三邊長分別為a,b,c,且a+b=10,ab=18,c=8,則該三角形的形狀是( )A.等腰三角形 B.直角三角形 C.鈍角三角形 D.等腰直角三角形10.如圖,小巷左右兩側(cè)是豎直的墻壁,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為米,頂端距離地面米.若梯子底端位置保持不動,將梯子斜靠在右墻時,頂端距離地面米,則小巷的寬度為( )A. B. C. D.11.如圖,在△ABC中,AC=BC,∠ACB=90176。方向航行至C處時突然發(fā)生故障,在C處等待救援.有一救援艇位于港口A正東方向20(﹣1)海里的B處,接到求救信號后,立即沿北偏東45176。③ ∠A=∠B∠C。②。⑥ A.2個 B.3個 C.4個 D.5個2.一艘漁船從港口A沿北偏東60176。P是BC上一點(diǎn),且DB=DC,過BC上一點(diǎn)P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,則PE+PF的長是( )A. B.6 C. D.6.如圖中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為10cm,正方形A的邊長為6cm、B的邊長為5cm、C的邊長為5cm,則正方形D的邊長為( )A.3cm B.cm C.cm D.4cm7.如圖,已知圓柱的底面直徑,高,小蟲在圓柱側(cè)面爬行,從點(diǎn)爬到點(diǎn),然后再沿另一面爬回點(diǎn),則小蟲爬行的最短路程的平方為( )A.18 B.48 C.120 D.728.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形?!唷螧=90176。設(shè)BD=x則CD=BD=x,BC=x,由∠CAD=30176。CD⊥BD,∴BD=CD,設(shè)BD=x,救援艇到達(dá)C處所用的時間為t,∵tan∠CAD=,AD=AB+BD,∴,得x=20(海里),∴BC=BD=20(海里),∴t= = (小時),故選C.【點(diǎn)睛】本題考查特殊角三角函數(shù),正確添加輔助線、熟練掌握特殊角的三角函數(shù)值是解題關(guān)鍵.3.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進(jìn)行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點(diǎn)和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,從而得出CE,GE,BG的關(guān)系.【詳解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90176?!螦BE+∠DFB=90176。﹣45176?!唷螪CB=45176。于是得到∠CBC′=90176?!郆C=BC′=8,根據(jù)勾股定理可得DC′=.故選:B.【點(diǎn)睛】此題考查了軸對稱﹣線路最短的問題,確定動點(diǎn)P為何位置時 PC+PD的值最小是解題的關(guān)鍵.12.A解析:A【分析】先根據(jù)角平分線的定義、角的和差可得,再根據(jù)平行線的性質(zhì)、等量代換可得,然后根據(jù)等腰三角形的定義可得,從而可得,最后在中,利用勾股定理即可得.【詳解】平分,平分,,,,在中,由勾股定理得:,故選:A.【點(diǎn)睛】本題考查了角平分線的定義、平行線的性質(zhì)、等腰三角形的定義、勾股定理等知識點(diǎn),熟練掌握等腰三角形的定義是解題關(guān)鍵.13.B解析:B【分析】過點(diǎn)D作DE⊥AB于點(diǎn)E,過點(diǎn)E作EQ⊥AC于點(diǎn)Q,EQ交AD于點(diǎn)P,連接CP,此時PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQ⊥AC、∠ACB=90176。故選B.【點(diǎn)睛】本題主要考查了勾股定理的逆定理,如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.15.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點(diǎn)A′,根據(jù)兩點(diǎn)之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可解題.【詳解】解:如圖,將圓柱展開,為上底面圓周長的一半,作關(guān)于的對稱點(diǎn),連接交于,
點(diǎn)擊復(fù)制文檔內(nèi)容
外語相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1