【摘要】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個(gè)不等的關(guān)系;(3)列:根據(jù)這個(gè)不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個(gè)所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫(xiě)出答案,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2025-08-17 07:18
【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】......基本不等式習(xí)專題之基本不等式做題技巧【基本知識(shí)】1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(3)若,則(當(dāng)且僅當(dāng)時(shí)取“=”)(4)當(dāng)且僅當(dāng)
2025-05-13 23:45
【摘要】不等式與不等式組專題復(fù)習(xí)(一)不等式考點(diǎn)1:不等式的定義知識(shí)點(diǎn)::用符號(hào)“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號(hào)表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負(fù)數(shù),則x<0;③x是非負(fù)數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
2025-04-16 12:51
【摘要】不等式與不等組測(cè)試卷班別姓名學(xué)號(hào)總分一、選擇題(每小題5分,共30分)nm?,則下列不等式中成立的是()(A)bnam???(B)nbma?(C)22nama?(D)nama???)5
2024-11-12 02:11
【摘要】張彥潔高級(jí)教師2020年名師課堂輔導(dǎo)講座—高中部分[學(xué)習(xí)內(nèi)容]一、有理不等式的解法有理不等式主要指一元一次不等式、一元二次不等式、高次不等式和分式不等式1、一元一次不等式:2、一元二次不等式:ax2+bc+c0(或0)的解的情況???????
2024-11-18 22:42
【摘要】2020屆高考數(shù)學(xué)二輪復(fù)習(xí)系列課件18《數(shù)列數(shù)列通項(xiàng)與數(shù)列中的不等式》一、基礎(chǔ)知識(shí).n有有關(guān)的命題:第一步:驗(yàn)證初始狀態(tài),即“n=n0時(shí)命題成立”;第二步:假設(shè)推理,即“假設(shè)n=k(k≥n0)時(shí)命題成立,由此出發(fā),推得n=k+1時(shí)命題也成立”.:21,0???aaa:注
2024-11-11 02:53
【摘要】不等式與不等式組綜合檢測(cè)題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
【摘要】 第五部分:不等式專題(線性規(guī)劃,一元二次不等式,基本不等式) 不等式是高中數(shù)學(xué)重要的知識(shí),考試中涉及的考點(diǎn)也很多,從江蘇目前的高中數(shù)學(xué)要求來(lái)說(shuō),除了不等式證明以外,其他形式的考察還是很多的。就內(nèi)容來(lái)說(shuō),這部分分為高一難度和高考難度;從題型上來(lái)說(shuō),包含:線性規(guī)劃,基本不等式,解不等式,不等式恒(能)成立,還有一些轉(zhuǎn)化為不等式問(wèn)題的題型。 高一難度的不等式問(wèn)題主要是線性規(guī)劃,基本不等式的常
2025-04-17 13:02
【摘要】不等式專題訓(xùn)練(三)班級(jí)??????姓名????????記分?????????一、選擇題:1、011??ba,則如下恒成立的不等式為:()(A)a2b2(B)abba2??(C)2bab?(D)baba???22
2024-11-12 06:24
【摘要】精品資源不等式與不等式組復(fù)習(xí)課一、不等式及一元一次不等式概念判斷下列不等式哪些是一元一次不等式,哪些不是?1、2、3、4、5、二、不等式的性質(zhì)(用符號(hào)語(yǔ)言來(lái)表示)1、若①②③④2、若三、解下列一元一次不等式并將解集在數(shù)軸上表示。①
【摘要】高二數(shù)學(xué)競(jìng)賽班二試講義第一講琴生不等式、冪平均不等式一、知識(shí)要點(diǎn):1.琴生不等式凸函數(shù)的定義:設(shè)連續(xù)函數(shù)的定義域?yàn)?,?duì)于區(qū)間內(nèi)任意兩點(diǎn),都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個(gè)點(diǎn)重合時(shí)“邊形”的重心在圖
2025-08-04 18:32
【摘要】精品資源不等式與不等式組單元測(cè)試班級(jí)姓名座號(hào)成績(jī)一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負(fù)整數(shù)解的個(gè)數(shù)為()A、0個(gè)
2025-03-24 05:47
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對(duì)稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51