freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高一數(shù)學(xué)知識點總結(jié)(文件)

2024-11-12 18:03 上一頁面

下一頁面
 

【正文】 數(shù)的值域。(2)與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}:定義域、值域、對應(yīng)法則函數(shù)的表示方法:(1)解析法:明確函數(shù)的定義域(2)圖想像:確定函數(shù)圖像是否連線,函數(shù)的圖像可以是連續(xù)的曲線、直線、折線、離散的點等等。對稱變換,即平移。(2)已知一個函數(shù)的解析式求其定義域,:①分式的分母不得為零。⑤三角函數(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z),一個函數(shù)的解析式由幾部分組成時,定義域為各部分有意義的自變量取值的公共部分(即交集).(3)已知一個函數(shù)的定義域,求另一個函數(shù)的定義域,(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)、求函數(shù)的解析式一般有四種情況(1)根據(jù)某實際問題需建立一種函數(shù)關(guān)系時,必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識尋求函數(shù)的解析式.(2)有時題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可.(3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達式時,可用換元法求函數(shù)f(x)的表達式,這時必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域.(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達式.【(三)、函數(shù)的值域與最值】函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:(1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.(2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時用代數(shù)換元,當(dāng)根式里是二次式時,用三角換元.(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.(4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”.(7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,、求函數(shù)的最值與值域的區(qū)別和聯(lián)系求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大),其實質(zhì)是相同的,只是提問的角度不同,(0,16],值是16,(∞,2]∪[2,+∞),但此函數(shù)無值和最小值,只有在改變函數(shù)定義域后,如x0時,、函數(shù)的最值在實際問題中的應(yīng)用函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.【(四)、函數(shù)的奇偶性】函數(shù)的奇偶性的定義:對于函數(shù)f(x),如果對于函數(shù)定義域內(nèi)的任意一個x,都有f(x)=f(x)(或f(x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù)).正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點:(1)定義域在數(shù)軸上關(guān)于原點對稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件。g(x)是偶函數(shù),類似地有“奇177。(4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)?!?五)、函數(shù)的單調(diào)性】單調(diào)函數(shù)對于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點x1,x2,當(dāng)x1x2時,都有不等式f(x1)(或(1)單調(diào)性是與“區(qū)間”.(2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替.(3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi).(4)注意定義的兩種等價形式:設(shè)xx2∈[a,b],那么:①在[a、b]上是增函數(shù)。如果f′(x)函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強對作圖、識圖、用圖能力的培養(yǎng),與f(x)的關(guān)系由f(x)的圖象需經(jīng)過的變換y=f(x)177。②求證:y=f(x)是偶函數(shù)。f(y)=2f(y),所以f(y)=f(y),這說明f(x)為偶函數(shù).③分別用(c0)替換x、y,有f(x+c)+f(x)=所以,所以f(x+c)=f(x).兩邊應(yīng)用中的結(jié)論,得f(x+2c)=f(x+c)=[f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個周期.高一數(shù)學(xué)知識點重點總結(jié)歸納6定義:從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于X軸)的傾斜程度。在空間,兩個平面相交時,交線為一條直線。定義域和值域:當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù)。在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。在x大于0時,函數(shù)的值域總是大于0的實數(shù)。(2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。(5)a大于0,函數(shù)過(0,0)。u注意:常用數(shù)集及其記法:非負(fù)整數(shù)集(即自然數(shù)集)記作:N正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R1)列舉法:{a,b,c……}2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。A205。B,B205。A那么A=B,記為Φ規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。記作“f(對應(yīng)關(guān)系):A(原象)B(象)”對于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個;(3)不要求集合B中的每一個元素在集合A中都有原象。(2)由f(x)177。,且當(dāng)時,則當(dāng)時=在R上的解析式為:⑴⑵⑶.:.第二章基本初等函數(shù)一、指數(shù)函數(shù)(一)指數(shù)與指數(shù)冪的運算1.根式的概念:一般地,如果,那么叫做的次方根,其中1,且∈*.u負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。如:,都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).對數(shù)函數(shù)對底數(shù)的限制:,且.對數(shù)函數(shù)的性質(zhì):a10定義域x>0定義域x>0值域為R值域為R在R上遞增在R上遞減函數(shù)圖象都過定點(1,0)函數(shù)圖象都過定點(1,0)(三)冪函數(shù)冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).冪函數(shù)性質(zhì)歸納.(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(1,1);(2)時,冪函數(shù)的圖象通過原點,并且在區(qū)間上是增函數(shù).特別地,當(dāng)時,冪函數(shù)的圖象下凸;當(dāng)時,冪函數(shù)的圖象上凸;(3)時,冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點時,圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時,圖象在軸上方無限地逼近軸正半軸.例題:0,a0,函數(shù)y=ax與y=loga(x)的圖象只能是():①。即:方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.函數(shù)零點的求法:(代數(shù)法)求方程的實數(shù)根;(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.二次函數(shù)的零點:二次函數(shù).(1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.(2)△=0,方程有兩相等實根,二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.(3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.收集數(shù)據(jù)畫散點圖選擇函數(shù)模型求函數(shù)模型用函數(shù)模型解釋實際問題符合實際不符合實際檢驗。③==log(2x23x+1)的遞減區(qū)間為,則a=,(1)求的定義域(2)求使的的取值范圍第三章函數(shù)的應(yīng)用一、方程的根與函數(shù)的零點函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。;(2);(3).(二)指數(shù)函數(shù)及其性質(zhì)指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域為R.注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.指數(shù)函數(shù)的圖象和性質(zhì)a10定義域R定義域R值域y>0值域y>0在R上單調(diào)遞增在R上單調(diào)遞減非奇非偶函數(shù)非奇非偶函數(shù)函數(shù)圖象都過定點(0,1)函數(shù)圖象都過定點(0,1)注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:(1)在[a,b]上,值域是或;(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);(3)對于指數(shù)函數(shù),總有;二、對數(shù)函數(shù)(一)對數(shù)1.對數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對數(shù),記作:(—底數(shù),—真數(shù),—對數(shù)式)說明:注意底數(shù)的限制,且;;注意對數(shù)的書寫格式.兩個重要對數(shù):常用對數(shù):以10為底的對數(shù);自然對數(shù):以無理數(shù)為底的對數(shù)的對數(shù).u指數(shù)式與對數(shù)式的互化冪值真數(shù)=N=b底數(shù)指數(shù)對數(shù)(二)對數(shù)的運算性質(zhì)如果,且,那么:1來判定。(2)各部分的自變量的取值情況.(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.補充:復(fù)合函數(shù)如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。(含邊界上的點)組成的集合M=
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1