【摘要】1.3.3最大值與最小值【學習要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會用導數(shù)求某定義域上函數(shù)的最值.【學法指導】弄清極值與最值的區(qū)別是學好本節(jié)的關鍵.函數(shù)的最值是一個整體性的概念.函數(shù)極值是在局部上對函數(shù)值的比較,具有相對性;而函數(shù)的最值則是表示函數(shù)在整個定義域上的情況,是對
2024-11-17 23:19
【摘要】本課時欄目開關填一填研一研練一練1.3.1單調(diào)性【學習要求】1.結(jié)合實例,直觀探索并掌握函數(shù)的單調(diào)性與導數(shù)的關系.2.能利用導數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡單的不等式.3.會求函數(shù)的單調(diào)區(qū)間(其中多項式函數(shù)一般不超過三次).【學法指導】結(jié)合
2024-11-18 08:08
【摘要】本課時欄目開關填一填研一研練一練1.1.1平均變化率【學習要求】1.理解并掌握平均變化率的概念.2.會求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說明生活中的實際問題.【學法指導】平均變化率可以刻畫函數(shù)值在某個范圍內(nèi)變化的快慢程度,理解
2024-11-17 23:13
【摘要】第三章導數(shù)及其應用第1課時平均變化率教學目標:,經(jīng)歷運用數(shù)學描述和刻畫現(xiàn)實世界的過程,體會數(shù)學的博大精深以及學習數(shù)學的意義;,為后續(xù)建立瞬時變化率和導數(shù)的數(shù)學模型提供豐富的背景.教學重點:平均變化率的實際意義與數(shù)學意義教學難點:對生活現(xiàn)象作出數(shù)學解釋教學過程:Ⅰ.問題
2024-11-19 20:37
【摘要】第三章導數(shù)及其應用第7課時函數(shù)的和、差、積、商的導數(shù)(2)教學目標:、和(或差)的導數(shù)法則,學會用法則求復雜形式的函數(shù)的導數(shù);.教學重點:靈活應用函數(shù)的和、差、積、商的求導法則教學難點:函數(shù)的積、商的求導法則的綜合應用教學過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學
2024-11-19 17:30
【摘要】1.1.2瞬時變化率——導數(shù)(二)【學習要求】1.理解函數(shù)的瞬時變化率——導數(shù)的準確定義和極限形式的意義,并掌握導數(shù)的幾何意義.2.理解導函數(shù)的概念,了解導數(shù)的物理意義和實際意義.【學法指導】導數(shù)就是瞬時變化率,理解導數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2024-11-17 17:03
【摘要】第三章導數(shù)及其應用第8課時函數(shù)的單調(diào)性教學目標:;.教學重點:利用導數(shù)判斷函數(shù)單調(diào)性教學難點:利用導數(shù)判斷函數(shù)單調(diào)性教學過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學::Ⅲ.數(shù)學應用例1:確定函數(shù)f(x)=x2-2x+4
【摘要】§導數(shù)在實際生活中的應用目的要求:(1)鞏固函數(shù)的極值與最值(2)利用導數(shù)解決應用題中有關最值問題例1.在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
2024-12-05 09:29
【摘要】導數(shù)在實際生活中的應用新課引入:導數(shù)在實際生活中有著廣泛的應用,利用導數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2024-11-17 11:00
【摘要】本課時欄目開關畫一畫研一研章末復習課本課時欄目開關畫一畫研一研章末復習課本課時欄目開關畫一畫研一研題型一分類討論思想的應用例1設函數(shù)f(x)=2x3-3(a-1)x2+1,其中a
【摘要】導數(shù)在研究函數(shù)中的應用一般地,設函數(shù)y=f(x)的定義域為A,區(qū)間IA.?如果對于區(qū)間I內(nèi)的任意兩個值x1、x2,當x1<x2時,都有f(x1)<f(x2),那么就說y=f(x)在區(qū)間I上是單調(diào)增函數(shù),I稱為y=f(x)的單調(diào)增區(qū)間.如果對于區(qū)間I內(nèi)的任意兩個值x1、x2
2024-11-18 08:56
【摘要】導數(shù)在研究函數(shù)中的應用——極大值與極小值一般地,設函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導數(shù)與函數(shù)的單調(diào)性的關系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-17 23:31
【摘要】第三章導數(shù)及其應用第2課時曲線上一點處的切線教學目標:;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學重點:理解曲線在一點處的切線的定義,以及曲線在一點處的切線的斜率的定義,掌握曲線在一點處切線斜率及切線方程的求法教學難點:理解曲線在一點處的
【摘要】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導數(shù)主要有哪些方面的應用?應用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導數(shù)與函數(shù)的單調(diào)性之間的關系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導數(shù)法1)如果在某區(qū)
【摘要】江蘇省建陵高級中學2020-2020學年高中數(shù)學導數(shù)在研究函數(shù)在的應用(函數(shù)的極值)導學案(無答案)蘇教版選修1-1一:學習目標1.了解函數(shù)極值的概念,會從幾何直觀理解函數(shù)的極值與其導數(shù)的關系,并會靈活應用;2.了解可導函數(shù)在某點取得極值的必要條件和充分條件(導數(shù)在極值點兩側(cè)異號)。二:課前預習1.函數(shù)a
2024-11-20 00:30