【摘要】 教學(xué)建議 :||a|-|b||≤|a+b|,在解決各類含絕對值不等式問題時經(jīng)常用到,要注意理解應(yīng)用. |a|-|b|≤|a±b|≤|a|+|b|的詮釋. 定理的構(gòu) 成部分 特征 ...
2025-04-03 03:22
【摘要】知識回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)?;仡櫨毩?xí)。,求證:最大,均為正數(shù),且,,,:設(shè) 練習(xí)cbdadcbaadcba????1練習(xí)2:某市環(huán)保局為增加城市的綠地面積,提出兩個投資方案:方案A為一次性投資500萬元;方案B為第一年投資5萬元,以后每年都比前一年增加
2024-11-17 23:20
【摘要】 教學(xué)建議 . ,使不等式變?yōu)椴缓^對值符號的一般不等式,而后,其解法就與解一般不等式或不等式組相同. |x-a||x-b|(a≠b)的解法可以利用解不等式|x|a(a0)?x2...
2025-04-03 01:44
【摘要】不等式的性質(zhì)不等式不等式的證明不等式的解法應(yīng)用不等式的性質(zhì)互逆性—ab傳遞性—ab,bc可加性—ab推論移項法則—a+cb同向可加—ab,cd可乘性—ab,推論同向正
2025-07-22 01:43
【摘要】問題探究大。數(shù)比左邊的點表示的數(shù),右邊的點表示的與表示兩個不同的實數(shù)分別與點:在數(shù)軸上不同的點 探究baBA1BAbaxAax(B)(b)ABabx從數(shù)軸上兩點的位置(如圖3-1-1)可以看出a,b之間具有哪些性質(zhì)。探究2:任意給出兩個實數(shù)a,b你能想到哪些比大
2024-11-17 19:03
【摘要】第一篇:-新課標(biāo)人教A版選修4-5不等式選講教學(xué)指導(dǎo) 2006年4月8日 在全省高中數(shù)學(xué)選修模塊教學(xué)研討會上對選修系列4教學(xué)指導(dǎo)研討的發(fā)言 吳公強(qiáng) 按照我省及寧夏回族自治區(qū)高中數(shù)學(xué)選修4專題系...
2024-11-16 23:34
【摘要】柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班甘肅張掖734000)摘要:柯西不等式是一個非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問題迎刃而解。本文在證明不等式,解三角形相關(guān)問題,求函數(shù)最值,解方程等問題的應(yīng)用方面給出幾個例子。關(guān)鍵詞:柯西不等式證明應(yīng)用中圖分類號:O178
2025-06-23 14:21
【摘要】第一篇:高中數(shù)學(xué)選修4-5:42數(shù)學(xué)歸納法證明不等式學(xué)案 【學(xué)習(xí)目標(biāo)】 (1+x)1+nx(x-1,x10,n?N+),了解當(dāng)nn 為實數(shù)時貝努利不等式也成立 【自主學(xué)習(xí)】 (1...
2024-11-06 18:24
【摘要】武勝中學(xué)高2009級培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號當(dāng)且僅當(dāng)ai=λbi(λ為常數(shù),i=1,,…n)時取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-23 14:32
【摘要】不等關(guān)系與不等式第三課時t57301p2???????1.兩個實數(shù)大小關(guān)系的比較原理知識梳理a-b>0a>b?a-b=0a=b?a-b<0a<b?(1)a>bb<a(對稱性)?(2)a>b,b>ca>c;
2024-11-17 19:44
【摘要】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進(jìn)行分類討論。解:∵解得方程兩根∴當(dāng)時,解集為當(dāng)時,不等式為,解集為當(dāng)時,解集為例2
2025-04-04 05:10
【摘要】柯西不等式教學(xué)設(shè)計一、教學(xué)目標(biāo):1、知識目標(biāo):(1)認(rèn)識二維柯西不等式的兩種形式:代數(shù)形式;向量形式。(2)學(xué)會二維柯西不等式的兩種證明方法:代數(shù)方法;向量方法。(3)了解一般形式的柯西不等式,并學(xué)會應(yīng)用及探究其證明過程。2、能力目標(biāo):(1)學(xué)會運用柯西不等式解決一些簡單問題。(2)學(xué)會運用柯西不等式證明不等式。(3)培養(yǎng)學(xué)生知識
2025-04-17 04:42
【摘要】I摘要柯西不等式是一個非常重要的公式,對于柯西不等式的深入了解對于我們解決一些問題有非常大的幫助。本文給出了柯西不等式的二維形式、三角形式、向量形式、一般形式、推廣形式、積分形式,對于柯西不等式的證明本文也給出了多種證明方法包括構(gòu)造二次函數(shù)法、數(shù)學(xué)歸納法、配方法、均值不等式法、向量法、行列式證明法、利用二次型法、利用線性相關(guān)性法,本文
2025-06-03 18:42
【摘要】 大家網(wǎng) 11/12高中數(shù)學(xué)不等式解題漫談一、活用倒數(shù)法則巧作不等變換——不等式的性質(zhì)和應(yīng)用不等式的性質(zhì)和運算法則有許多,如對稱性,傳遞性,,尤其是不等變換有很大的優(yōu)越性.倒數(shù)法則:若ab0,則ab與1.分析:當(dāng)a1時,原
2025-06-07 23:55
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學(xué)們學(xué)習(xí)不等式要重過學(xué)經(jīng)我們已Rbaabba???222.,,,,等號成立時且僅當(dāng)當(dāng)那么如果定理baabbaRba????2122??.,,,,成立等號時當(dāng)且僅當(dāng)所以時等號成立當(dāng)且僅因為證明bababaabb
2025-08-05 17:11