【摘要】平面向量應(yīng)用舉例考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量在物理中的應(yīng)用1、3、59向量在幾何中的應(yīng)用6、7、10綜合運(yùn)用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個(gè)力F1,F(xiàn)2,則|F1+F2|為()A.10
2024-11-19 19:36
【摘要】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【摘要】(2)指數(shù)式對(duì)數(shù)式????叫做真數(shù)。叫做對(duì)數(shù)的底數(shù),其中記作的對(duì)數(shù)為底以叫做那么數(shù)且一般地,如果NaNxarithmNaxaaNaax,log,log,1,0????對(duì)數(shù)定義:xx復(fù)習(xí)上節(jié)內(nèi)容有關(guān)性質(zhì):⑴負(fù)數(shù)與零沒有對(duì)數(shù)(∵在指數(shù)式中N0)
2024-11-17 05:40
【摘要】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2024-11-19 22:43
【摘要】【金榜教程】2021年高中數(shù)學(xué)向量的加法檢測(cè)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)△ABC中,ABa?,BCb?,則ab?=()(A)AB(B)AC(C)BC(D)CAABCD中,ABa?,ADb?,則ACBA?
2024-12-03 03:15
【摘要】向量的線性運(yùn)算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2024-12-05 03:24
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算第一課時(shí)對(duì)數(shù)的概念三維目標(biāo)定向〖知識(shí)與技能〗理解對(duì)數(shù)的概念,掌握對(duì)數(shù)恒等式及常用對(duì)數(shù)的概念,領(lǐng)會(huì)對(duì)數(shù)與指數(shù)的關(guān)系?!歼^程與方法〗從指數(shù)函數(shù)入手,引出對(duì)數(shù)的概念及指數(shù)式與對(duì)數(shù)式的關(guān)系,得到對(duì)數(shù)的三條性質(zhì)及對(duì)數(shù)恒等式?!记楦小B(tài)度與價(jià)值觀〗增強(qiáng)數(shù)學(xué)的理性思維能力及用普遍聯(lián)系、變化發(fā)展的眼光看待問題的能
2024-12-08 01:57
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算[備用習(xí)題]()A.10410753aaaaa???B.6522)(yxyxyxy???C.8157332babaabba?D.33)1255(?=5+125125521253??答案:Ba0,r,s∈Q,以下運(yùn)算中正確
【摘要】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)跟蹤檢測(cè)新人教A版必修4一、選擇題1.O是△ABC內(nèi)一點(diǎn),且|OA→|=|OB→|=|OC→|,則O是△ABC的()A.重心B.內(nèi)心C.外心D.垂心解析:由于|OA→|=|OB→|=|OC→|,即OA=OB=OC,所以O(shè)點(diǎn)到
2024-12-08 07:03
【摘要】向量減法運(yùn)算及其幾何意義??谒闹虚喿x與理解閱讀課本P85頁(yè),10分鐘后檢測(cè)探究:向量是否有減法?復(fù)習(xí):實(shí)數(shù)減法的意義是什么?答:減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù),即a-b=a+(-b)猜想:向量減法的意義是什么?答:減去一個(gè)向量等于加上這個(gè)向量的相反向量,即a-b=a+(-b)類比相反數(shù)
2025-07-18 11:57
【摘要】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
2024-11-19 20:38
【摘要】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點(diǎn)同上教學(xué)設(shè)
【摘要】任意角考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難任意角的概念及推廣39象限角的判定1、2、4終邊相同的角及應(yīng)用57、10區(qū)間角的表示6、11確定角所在的象限8121.下列各角中,與60°角終邊相同的角是()A.-300°
2024-12-05 06:49
【摘要】《向量的加法運(yùn)算及其幾何意義》教案教學(xué)目標(biāo):1、掌握向量的加法運(yùn)算,并理解其幾何意義;2、會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;3、通過將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類比的數(shù)學(xué)方法;教學(xué)重點(diǎn):會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的
2025-08-04 23:07
【摘要】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09