【摘要】兩腰相等;,(簡稱“在同一個三角形中,等邊對等角”)、底邊上的中線和底邊上的高互相重合。(簡稱“等腰三角形三線合一”),對稱軸是底邊的中垂線。溫故而知新等腰三角形有哪些特征呢?ABCD如圖所示,量出AC的長,就可知道河的寬度AB,你知道為什么嗎?探索思考
2024-11-03 15:45
【摘要】等腰三角形(2)___等腰三角形的判定性質(zhì):△ABC,使∠B=∠C=∠α,BC=a.:_______________________學(xué)習(xí)目標(biāo):有兩個角相等的三角形是等腰三角形。能區(qū)分等腰三角形的性質(zhì)與判定方法。
2024-12-30 20:28
【摘要】等腰三角形的性質(zhì)龍居九義校:李小萍總結(jié)大家觀察的幾種三角形:有什么共同點?有兩條邊相等等腰三角形的概念:有兩條邊相等的三角形是等腰三角形。結(jié)合以下圖形,指出等腰三角形的腰,底邊,頂角,底角。兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角。等腰三角形中,相等的兩邊都叫腰,另一邊叫做底邊。等腰
2024-11-24 17:30
【摘要】等腰三角形有兩邊相等的三角形叫做等腰三角形。1、如圖,點D在AC上,AB=AC,AD=BD。你能在圖中找到幾個等腰三角形?說出每個等腰三角形的腰、底邊和頂角。ABCD等腰三角形腰底邊頂角△ABC△ABDAB和ACBC∠AAD和BDAB∠ADB找一
2024-12-08 02:02
【摘要】等腰三角形的判定臨海中學(xué)初二備課組等腰三角形的判定學(xué)習(xí)目標(biāo)自學(xué)指導(dǎo)討論練習(xí)課堂作業(yè)我們在上一節(jié)學(xué)習(xí)了等腰三角形的性質(zhì)?,F(xiàn)在你能回答我一些問題嗎?一、復(fù)習(xí):1、等腰三角形的性質(zhì)定理是什么?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2、這個定理
2025-08-01 18:01
【摘要】等腰三角形的性質(zhì)數(shù)科院李紫20222202225ABC⑴由“兩邊相等”得到“等腰三角形”.∵△ABC中,AB=AC,∴△ABC是等腰三角形.⑵由“等腰三角形”得到“兩邊相等”.如圖,∵△ABC是等腰三角
2025-08-01 13:41
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,簡稱“在同一個三角形中,等邊對等角”;、底邊上的中線和底邊上的高互相重合。簡稱“等腰三角形三線合一”,對稱軸是底邊的中垂線。?:ΔABC中,已知AB=AC,?圖中有哪些角相等?∠B=∠C在同一個三角形
【摘要】等腰三角形兩腰相等;等腰三角形兩底角相等;等腰三角形“三線合一”;……問題1:小區(qū)內(nèi)有一個三角形小花壇,現(xiàn)在想把它分割成兩個三角形,使之可以種上不同的花。你會怎么分?ABCP問題2:如果要分割成兩個等腰三角形呢?原三角形的角度不知道。無法分!從頂點引一條線段問題3:如果花壇
2024-11-24 15:15
【摘要】等腰三角形的性質(zhì)說課提綱?教材分析?教學(xué)方法?學(xué)生學(xué)法?教學(xué)過程?板書設(shè)計?教學(xué)感想?教材地位?本課內(nèi)容在初中數(shù)學(xué)教學(xué)中起著比較重要的作用,它是對三角形的性質(zhì)的呈現(xiàn)。?通過等腰三角形的性質(zhì)反映在一個三角形中等邊對等角,等角對等邊
2024-12-01 00:43
【摘要】復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,(簡稱“等邊對等角”);、底邊上的中線和底邊上的高互相重合。(簡稱“在同一個三角形中,三線合一”),對成軸是頂角的平分線所在的直線如圖,這是一張被污染了的三角形紙片,已知個三角形的頂點ACB???AB和AC的長
【摘要】等腰三角形(2)要注意是哪三線?做一做2:畫出手中等腰三角形的某一底角平分線、對邊(腰)上的中線和高,看是否重合?等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,簡稱“三線合一”(1)“等腰三角形”是三線合一的大前提GECBAF如圖:BF為AC邊上的高,BE為
2024-11-24 15:11
【摘要】第20講┃等腰三角形第20講┃考點聚焦考點聚焦考點1等腰三角形的概念與性質(zhì)定義有____相等的三角形是等腰三角形.相等的兩邊叫腰,第三邊為底性質(zhì)軸對稱性等腰三角形是軸對稱圖形,有____條對稱軸定理1等腰三角形的兩個底角相等(簡稱為:__________)
2025-07-20 09:12
【摘要】八年級上冊等腰三角形(第2課時)問題等腰三角形性質(zhì)定理的內(nèi)容是什么?這個命題的題設(shè)和結(jié)論分別是什么?性質(zhì)定理的條件是:一個三角形中有兩條邊相等.結(jié)論:這兩條邊所對的角相等.探索等腰三角形的判定定理作頂角的平分線或底邊上的高或底邊的中線,將一個三角形的問題轉(zhuǎn)化為兩個全等三
【摘要】等腰三角形的判定邵原二中孔莊運復(fù)習(xí)引入兩腰相等;等腰三角形有哪些特征呢?ABC,(簡稱“等邊對等角”);頂角的平分線、底邊上的中線和底邊上的高互相重合。(簡稱“三線合一”),
【摘要】等腰三角形的判定P143思考如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險船只的報警,當(dāng)時測得∠A=∠B.如果這兩艘救生船以同樣的速度同時出發(fā),能不能大約同時趕到出事地點(不考慮風(fēng)浪因素)?OBAOAB已知:如圖,在ΔOAB中,∠A=∠B,求證:OA=OB.證明:過O點作OC⊥AB,垂
2024-11-24 17:31